
Dynamic Rational Inattention
and the Phillips Curve*

Hassan Afrouzi†

Columbia University
Choongryul Yang‡

Federal Reserve Board

First Draft: April, 2017
This Draft: April, 2021

[Code Repositories: Matlab, Julia] [Software Documentation] [Jupyter Notebooks]

Abstract

We study and fully characterize the dynamics of belief distributions in linear-quadratic-Gaussian
rational inattention models. Building on these results, we propose a novel solution method that
is orders of magnitude faster than alternative methods and is efficient enough for quantitative
work. As an application, we develop an attention-driven theory of pricing where the Phillips
curve slope responds endogenously to the conduct monetary policy. While more hawkish mon-
etary policy flattens the Phillips curve, a more dovish monetary policy flattens it in the short
run but leads to a steeper Phillips curve in the long run.

JEL Classification: E71, E32, D83
Keywords: Rational Inattention, Dynamic Information Acquisition, Phillips Curve

*We are grateful to Saroj Bhattarai and Olivier Coibion for their guidance and support. We are also thankful to
George-Marios Angeletos and Mirko Wiederholt for their insightful discussions of this paper as well as to Eric Sims
for a thoughtful discussion of an earlier version. We would also like to thank Miguel Acosta, Mark Dean, Chad Fulton,
Xavier Gabaix, Yuriy Gorodnichenko, Jennifer La’O, John Leahy, Yueran Ma, Filip Matějka, Emi Nakamura, Kris Ni-
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1 Introduction

Since Muth (1961), full-information rational expectations theory has grown to be an essential part
of macroeconomic modeling. Nonetheless, a growing body of evidence on costly information has
called for modifications to the theory that take such costs into account. To this end, the rational
inattention theory (Sims, 2003, 2006, 2010) provides an appealing alternative by preserving the
consistency of expectations within an optimizing framework. However, these models are notori-
ously complex to solve, as a result of which their implications for dynamics of belief distributions
remain largely unexplored.

A central question that emerges from these models is how do distributions of optimal beliefs
evolve over time from an arbitrary prior? The answer to this question has immediate practical and
broad implications, from interpreting the consequences of information provision experiments that
perturb initial priors to designing optimal communication policies with the public.

In this paper, we make three contributions. First, we provide an analytical information Euler

equation that characterizes the dynamics of optimal belief distributions from any arbitrary initial
prior in linear-quadratic-Gaussian (LQG) rational inattention models.1 Second, we use our theoret-
ical results to develop a novel method for solving these models that is several orders of magnitude
faster and more accurate in characterizing the dynamics and the steady-state of belief distributions
than alternative algorithms that rely on approximate solutions or value function iteration. Third, as
an application of our general framework, we develop an attention-based theory of pricing, in which
the slope of the Phillips curve is endogenous to the conduct of monetary policy and is occasionally
flat due to transition dynamics of attention.

Dynamic rational inattention problems (DRIPs) are notoriously complex because both the state
and choice variables are distributions with endogenous supports. LQG settings reduce these choice
and state variables to covariance matrices of Gaussian distributions. However, even in these cases,
for an n-dimensional Gaussian Markov process, the corresponding rational inattention problem has
n(n+1)

2
state variables. In particular, one major complication is a set of n “no-forgetting” constraints

that bind if the agent does not acquire information in the corresponding dimension.
Our first contribution is that we derive an analytical information Euler equation that fully char-

acterizes the dynamics of optimal beliefs. In particular, our Euler equation provides a simple and
intuitive rule for which no-forgetting constraints bind in each period by characterizing the marginal
value of information in all dimensions of the state. The corresponding constraint then binds if this
value is less than the marginal cost of one bit of information—which is the only parameter of the
cost function for information acquisition.2

1In LQG rational inattention problems, the payoffs are quadratic, shocks are Gaussian, and the cost of information
is linear in Shannon’s mutual information function.

2In this sense, the extensive margin of rational inattention models connect with the notion of sparsity, as in Gabaix
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As our second contribution, we propose a novel solution method for characterizing the tran-
sition dynamics and the steady-state of DRIPs based on iterating over our analytical information
Euler equation. Our solution method is fast and can be implemented in quantitative work (e.g., our
quantitative model or Song and Stern, 2020, who utilize our algorithm). Moreover, to demonstrate
our toolbox’s accuracy and efficiency for the steady-state information structure, we have replicated
three canonical papers (Maćkowiak and Wiederholt, 2009a; Sims, 2010; Maćkowiak, Matějka, and
Wiederholt, 2018) that use three different solution methods.3 A summary of our computing times is
reported in Table 1. Our computational toolbox is available for public use as the DRIPs.m repos-
itory for Matlab and the DRIPs.jl Julia package.4 All examples and replications are available
as interactive Jupyter notebooks that are accessible online with no software requirements.5

Application to Phillips Curve. Our third contribution is to apply our analytical framework to
propose an attention-based theory of the Phillips curve. A recent growing literature documents that
the slope of the Phillips curve has flattened during the last few decades.6 While benchmark New
Keynesian models would relate this flattening to changes in the model’s structural parameters, in
an analytical general equilibrium model with rationally inattentive firms, we show that the Phillips
curve slope is endogenous to the conduct of monetary policy.

In our model, when monetary authority puts a larger weight on stabilizing the nominal variables
(i.e., when monetary policy is more hawkish), firms endogenously choose to pay less attention to
changes in their input costs. Accordingly, when monetary policy is more hawkish, prices are less
sensitive to the economy’s slack, the Phillips curve is flatter, and firms’ inflation expectations are
more anchored. Therefore, our theory suggests that the decline in the slope of the Phillips curve is
related to the more hawkish monetary policy adopted at the beginning of the Great Moderation.7

This effect, however, is not symmetric. While more hawkish monetary policy flattens the
Phillips curve, a more dovish monetary policy completely flattens the Phillips curve in the short-
run but steepens it in the long-run. The key to this asymmetry lies in the dynamic incentives
in information acquisition. In our model, forward-looking firms learn about their input costs’
persistent changes and invest in a stock of knowledge about these processes. When monetary
policy becomes more dovish, firms suddenly find themselves in a more uncertain environment
where their stock of knowledge depreciates faster. Hence, a more dovish monetary policy decreases

(2014), and provide a new perspective and microfoundation for how inattentive agents completely ignore certain
dimensions of their environment.

3Our replications of Sims (2010); Maćkowiak and Wiederholt (2009a); Maćkowiak, Matějka, and Wiederholt
(2018) is described in Section 2.4, Appendix C.1 and Appendix C.2, respectively.

4Link for Matlab GitHub Repository: https://github.com/choongryulyang/DRIPs.m
Link for Julia Package: https://www.afrouzi.com/DRIPs.jl/dev

5Link: https://mybinder.org/v2/gh/afrouzi/DRIPs.jl/binder?filepath=examples
6See, for instance, Coibion and Gorodnichenko (2015b); Blanchard (2016); Bullard (2018); Hooper, Mishkin, and

Sufi (2020); Del Negro, Lenza, Primiceri, and Tambalotti (2020).
7See, e.g., Clarida, Galí, and Gertler (2000) for evidence on more hawkish monetary policy in the post-Volcker era.
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the net present value of knowledge, and crowds out firms’ information acquisition in the short-run,
a period during which prices are not sensitive to changes in input costs and the Phillips curve is
completely flat. However, this effect dissipates as firms’ uncertainty about their input costs grows
and, eventually, they restart paying attention to their costs. In this new regime, firms have a lower
stock of knowledge, but they acquire information at a higher rate. The higher rate of information
acquisition makes prices more sensitive to changes in input costs and leads to a steeper Phillips
curve and less anchored inflation expectations relative to the previous regime.

Finally, we examine the quantitative relevance of our proposed mechanism for the change in the
Phillips curve slope. Using our computational toolbox, we solve and calibrate a dynamic general
equilibrium rational inattention model with monetary policy and supply shocks to the post-Volcker
U.S. data (1983-2007). In the spirit of Maćkowiak and Wiederholt (2015), we examine the out-
of-sample fit of our model by replacing the post-Volcker Taylor rule with an estimated Taylor rule
for the pre-Volcker period. We find that our model quantitatively matches the higher variance of
inflation and GDP in the pre-Volcker era as non-targeted moments. As our main empirical exercise,
we simulate data from our calibrated model using our estimated pre- and post-Volcker monetary
policy rules and estimate the implied slope of the Phillips curve in both samples. We find that our
model can explain up to a 75% decline in the Phillips curve slope in the post-Volcker period.

Related Literature. We contribute to the literature that has laid the ground for solving DRIPs in
LQG settings (Sims, 2003; Maćkowiak and Wiederholt, 2009a; Maćkowiak, Matějka, and Wieder-
holt, 2018; Fulton, 2018).8 These papers make two assumptions that we depart from: (1) they
abstract away from transition dynamics, and (2) they solve for the long-run steady-state informa-
tion structure without discounting. A notable exception is Sims (2010), who studies the special
case when solutions are interior, along with an example with two shocks and one action. More
recently, Miao, Wu, and Young (2020) propose a value function iteration method but they do not
characterize optimality conditions. We contribute to this literature by fully characterizing the op-
timality conditions, which serve as the foundation of our Euler equation and solution method. We
provide a more thorough and detailed description of our contribution to this literature in Section
2.5.

We also contribute to the literature that considers how rational inattention affects the pricing
decisions of firms in dynamic environments (Maćkowiak and Wiederholt, 2009a, 2015; Paciello
and Wiederholt, 2014; Woodford, 2009; Matějka, 2015; Stevens, 2019) and connect this literature
to the set of papers that study the implications of imperfect information for Phillips curves (Lu-
cas, 1972; Woodford, 2003; Nimark, 2008; Angeletos and Lian, 2018; Angeletos and Huo, 2021;
Gabaix, 2020).9 Our main departure is to derive a Phillips curve in a model with rational inatten-

8See Maćkowiak, Matějka, and Wiederholt (2020) for a recent survey of the rational inattention literature.
9See, also, Mankiw and Reis (2002); Angeletos and La’O (2009); Angeletos and Lian (2016).
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tion and study how monetary policy shapes and alters the incentives in information acquisition of
firms, which in turn determines the slope of the Phillips curve. Specifically, a notable implication
of our model is the different short-run and long-run implications of changes in monetary policy for
the slope of the Phillips curve.

Finally, our attention-based theory of the Phillips curve is motivated by the recent literature
that studies the apparent flattening of the Phillips curve in the last few decades. Very broadly, this
literature discusses two different explanations for this flattening. The first explanation is that the
structural slope of the Phillips curve is stable over time, but the reduced form relationship between
inflation and the output gap has changed either due to changes in the cyclical behavior of inflation
(Stock and Watson, 2020) or changes in the conduct of monetary policy (e.g., Hooper, Mishkin,
and Sufi, 2020; McLeay and Tenreyro, 2020) with a particular focus on the role of inflation expec-
tations (e.g., Coibion and Gorodnichenko, 2015b; Jorgensen and Lansing, 2019; Hazell, Herreño,
Nakamura, and Steinsson, 2020).10 A second explanation is the slope hypothesis that argues for
a structural change in the slope of the Phillips curve (see, e.g., Forbes, 2019; Del Negro, Lenza,
Primiceri, and Tambalotti, 2020; Rubbo, 2020).11 We contribute to this literature by connecting
these two explanations and developing a theory in which the structural slope of the Phillips curve
is affected by the conduct of monetary policy.12 In particular, in our theory, the structural slope of
the Phillips curve responds asymmetrically to the dovishness of monetary policy over time; where
it temporarily flattens after the policy becomes more dovish but eventually steepens once firms’
uncertainty about their environment grows to a critical level. In that sense, our theory provides a
cautionary tale against policies that treat the slope of the Phillips curve as exogenously determined.

Layout. The paper is organized as follows. Section 2 characterizes transition dynamics of DRIPs
in LQG settings, outlines our solution algorithm, and provides a more thorough discussion of how
our approach relates to the existing literature. Section 3 provides an attention-based theory of the
Phillips curve in an analytical framework. Section 4 presents our quantitative model and results.
Section 5 concludes.

2 Theoretical Framework

This section formalizes the problem of an agent who chooses her information structure endoge-
nously over time. We start by setting up the general problem and deriving some properties for

10Hazell, Herreño, Nakamura, and Steinsson (2020) document that the Phillips curve is flatter in the post-Volcker
era, but once viewed through the lens of benchmark New Keynesian models, the slope implied by their estimates is
so small that the flattening is irrelevant. According to our model, the benchmark New Keynesian Phillips curve is (1)
misspecified and (2) “too” forward-looking, which is why the slope implied by our model is larger in magnitude.

11For a more detailed review of the literature on the slope of the Phillips curve, see, for instance, the discussions in
Hazell, Herreño, Nakamura, and Steinsson (2020) or Del Negro, Lenza, Primiceri, and Tambalotti (2020).

12See, also, L’Huillier and Zame (2020) who connect changes in price stickiness to the pursuit of price stability by
the central bank.
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its solution without making assumptions on payoffs and information structures. We then derive
and solve the implied LQG problem and present our algorithm for solving DRIPs and compare its
accuracy and efficiency by replicating results from previous literature. We conclude this section
by discussing the properties of transition dynamics in DRIPs in the context of an extension of the
pricing example in Sims (2010).

2.1 Environment

Preferences. Time is discrete and is indexed by t ∈ {0, 1, 2, . . . }. At each time t, the agent
chooses a vector of actions ~at ∈ Rm and gains an instantaneous payoff of v(~at; ~xt) where {~xt ∈
Rn}∞t=0 is an exogenous stochastic process, and v(.; .) : Rm × Rn → R is strictly concave and
bounded above with respect to its first argument.

Set of Available Signals. We assume that at any time t, the agent has access to a set of available
signals in the economy, which we call St. Signals in St are informative of the history of shocks,
X t ≡ (~x0, . . . , ~xt). In particular, we assume:

1. St is rich: for any posterior distribution on X t, there is a set of signals St ⊂ St that generate
that posterior.

2. Available signals do not expire over time: St ⊂ St+h,∀h ≥ 0.

3. Available signals at time t are not informative of future innovations to ~xt: ∀St ∈ St,∀h ≥ 1,
St ⊥ ~xt+h|X t.

Information Sets and Dynamics of Beliefs. Our main assumption here is that the agent does
not forget information over time, commonly referred to as the “no-forgetting” condition. The
agent understands that any choice of information will affect their priors in the future, and that
information has a continuation value.13 Formally, a sequence of information sets {St ⊆ St}t≥0

satisfy the no-forgetting condition for the agent if St ⊆ St+τ ,∀t ≥ 0, τ ≥ 0.

Cost of Information and the Attention Problem. We assume the cost of information is linear
in Shannon’s mutual information function.14 Formally, let {St}t≥0 denote a set of information sets
for the agent which satisfies the no-forgetting constraint. Then, the agent’s flow cost of information

13Although we assume perfect memory in our benchmark, these dynamic incentives exist insofar as the agent carries
a part of her memory with her over time. For a model with fading memory with exogenous information, see Nagel
and Xu (2019). Furthermore, Azeredo da Silveira and Woodford (2019) endogenize noisy memory in a setting where
carrying information over time is costly.

14For a discussion of Shannon’s mutual information function and generalizations see Caplin, Dean, and Leahy
(2017). See also Hébert and Woodford (2018) for an alternative cost function.
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at time t is ωI(X t;St|St−1), where

I(X t;St|St−1) ≡ h(X t|St−1)− E[h(X t|St)|St−1]

is the reduction in entropy ofX t that the agent experiences by expanding her knowledge from St−1

to St, and ω is the marginal cost of a unit of information.15

We can now formalize the rational inattention problem (henceforth the RI Problem) of the agent
in our setup as:

V0(S−1) ≡ sup
{St⊂St,~at:St→Rm}t≥0

∞∑
t=0

βtE[v(~at; ~xt)− ωI(X t;St|St−1)|S−1] (2.1)

s.t. St = St−1 ∪ St, ∀t ≥ 0, (2.2)

S−1 given. (2.3)

where Equation (2.1) is the RI Problem in which the agent maximizes the net present value of her
payoffs minus the cost of attention; Equation (2.2) captures the evolution of the agent’s information
set over time and Equation (2.3) specifies the initial condition for the dynamic problem.

It is important to note that this problem is a dynamic problem only because of information
acquisition: any information acquired in a given period potentially reduces the expected costs of
information acquisition in the future by expanding the agent’s information set.

2.1.1 Two General Properties of the Solution

Solving the RI problem in Equation (2.1) is complicated by two issues: (1) the agent can choose
any subset of signals in any period and (2) the cost of information depends on the whole history
of actions and states, which increases the dimensionality of the problem with time. The following
two lemmas present results that follow directly from the linearity of the cost function in Shannon’s
mutual information function and simplify these complications.

Sufficiency of Actions for Signals. An important consequence of assuming that the cost of in-
formation is linear in Shannon’s mutual information function is that it implies actions are sufficient
statistics for signals over time (Steiner, Stewart, and Matějka, 2017; Ravid, 2020). The following
lemma formalizes this result in our setting.

Lemma 2.1. Suppose {(St ⊂ St,~at : St → Rm}∞t=0 ∪ S−1 is a solution to the RI problem in

Equation (2.1). ∀t ≥ 0, define at ≡ {~aτ}0≤τ≤t ∪ S−1. Then, X t → at → St forms a Markov

chain, i.e. at is a sufficient statistic for St with respect to X t.
15This unit is either bits—if entropy is defined in terms of binary logarithm—or nats—if entropy is defined in terms

of natural logarithm.
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Proof. See Appendix A.1.

In static environments, the sufficiency of actions for signals follows from optimality (Matějka
and McKay, 2015). Since information is costly and only valuable in choosing the optimal action,
an information set not revealed by the optimal action must be suboptimal (otherwise, there exists
an information set that generates the same action but is less costly). In dynamic settings, however,
the agent might find it optimal to acquire information about future actions before-hand. Lemma
2.1 rules out this case by showing that if the chain-rule of mutual information holds, then the agent
has no incentives to acquire information about future actions.16

The result in Lemma 2.1 allows us to directly substitute actions for signals. In particular, we
can impose that the agent directly chooses {~at ∈ St}t≥0 without any loss of generality.

Conditional Independence of Actions from Past Shocks. It follows from Lemma 2.1 that if an
optimal information structure exists, then ∀t ≥ 0 : I(X t;St|St−1) = I(X t; at|at−1). Here we show
this can be simplified if {~xt}t≥0 follows a Markov process.

Lemma 2.2. Suppose {~xt}t≥0 is a Markov process and {~at}t≥0 is a solution to the 2.1 given an

initial information set S−1. Then ∀t ≥ 0:

I(X t; at|at−1) = I(~xt;~at|at−1), a−1 ≡ S−1.

Proof. See Appendix A.2.

When {~xt}t≥0 is Markov, at any time t, ~xt is all the agent needs to know to predict the future
states. Therefore, it is suboptimal to acquire information about previous realizations of the state.

2.2 The Linear-Quadratic-Gaussian Problem

In this section, we characterize the optimal information structure in a Linear-Quadratic-Gaussian
(LQG) setting. In particular, we assume that {~xt ∈ Rn : t ≥ 0} is a Gaussian process and the
payoff function of the agent is quadratic and given by:

v(~at; ~xt) = −1

2
(~a′t − ~x′tH)(~at − H′~xt) + terms independent of ~at

Here, H ∈ Rn×m has full column rank and captures the interaction of the actions with the state.17

The assumption of rank(H) = m is without loss of generality; in the case that any two columns
16The chain-rule of mutual information implies that for every three random variables:

I(X; (Y,Z)) = I(X;Y ) + I(X;Z|Y ).

Intuitively, it imposes a certain type of linearity: mutual information is independent of whether the information is
measured altogether or part by part.

17While we take this as an assumption, this payoff function can also be derived as a second-order approximation
to a twice differentiable function v(.; .) around the non-stochastic optimal action and disregarding the terms that are
independent of the agent’s choices.
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of H are linearly dependent, we can reclassify the problem so that all co-linear actions are in
one class. Moreover, we have normalized the Hessian matrix of v with respect to ~a to negative
identity.18

Optimality of Gaussian Posteriors. We start by proving that optimal actions are Gaussian under
quadratic payoff with a Gaussian initial prior. Maćkowiak and Wiederholt (2009b) prove this result
in their setup where the cost of information is given by

lim
T→∞

1

T
I(XT ; aT ).

Our setup is marginally different as in our case the cost of information is discounted at rate β and
is equal to (1− β)

∑∞
t=0 β

tI(X t; at), as derived in the proof of Lemma 2.1. The following lemma
presents a modified proof that applies to our specification.

Lemma 2.3. Suppose {~xt}t≥0 is a Gaussian process and that the initial conditional prior, ~x0|S−1,

has a Gaussian distribution. If {~at}t≥0 is a solution to the RI problem with quadratic payoff, then

the posterior distribution ~xt|{~aτ}0≤τ≤t ∪ S−1 is also Gaussian.

Proof. See Appendix A.3.

The Equivalent LQG Problem. Lemma 2.3 simplifies the structure of the problem in that it
allows us to re-write the RI problem in terms of choosing a set of Gaussian joint distributions be-
tween the actions and the state. This is a canonical formulation of the rational inattention problems
in LQG settings and it appears in different forms throughout the literature. For completeness, the
following Lemma derives the LQG problem in our setting that follows from the RI problem in
Equation (2.1). A similar formulation appears in Equation (27) in Sims (2010).

Lemma 2.4. Suppose the initial prior ~x0|S−1 is Gaussian and that {~xt}t≥0 is a Gauss-Markov

process with the following state-space representation:

~xt = A~xt−1 + Q~ut, ~ut ⊥ ~xt−1, ~ut ∼ N (0, Ik×k), k ∈ N,

Then, the RI problem in Equation (2.1) with quadratic payoff is equivalent to choosing a set of

symmetric positive semidefinite matrices {Σt|t}t≥0:

18This is without loss of generality; for any negative definite Hessian matrix −Haa ≺ 0, normalize the action
vectors by H

− 1
2

aa to transform the payoff function to our original formulation. Finally, while we have abstracted away
from endogenous state variables, such problems could be reformulated in a similar form by redefining the action and
an adequate redefinition of the matrix H (see, e.g., Miao, Wu, and Young, 2020; Mackowiak and Wiederholt, 2020).
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V0(Σ0|−1) = max
{Σt|t∈Sn+}t≥0

−1

2

∞∑
t=0

βt
[
tr(Σt|tΩ) + ω ln

(
|Σt|t−1|
|Σt|t|

)]
(2.4)

s.t. Σt+1|t = AΣt|tA
′ + QQ′, ∀t ≥ 0, (2.5)

Σt|t−1 −Σt|t � 0, ∀t ≥ 0 (2.6)

0 ≺ Σ0|−1 ≺ ∞ given. (2.7)

Here, |.| is the determinant operator, � denotes positive semidefiniteness, Σt|t ≡ var(~xt|at),

Σt|t−1 ≡ var(~xt|at−1), Ω ≡ HH′ and Sn+ is the n-dimensional symmetric positive semidefinite

cone.

Proof. See Appendix A.4.

Lemma 2.4 reformulates the RI problem into an LQG problem in Equation (2.4) subject to
the law of motion for the agent’s priors in Equation (2.5) and a set of no-forgetting constraints

in Equation (2.6) that follow directly from the no-forgetting condition and require the agent’s
posterior to be at least as precise as their prior in all dimensions of the state. Finally, Equation (2.7)
specifies the initial condition for the problem as the covariance matrix of the agent’s prior belief
over ~x0 induced by the initial information set S−1.

Solution. Sims (2010) derives a first-order condition for the solution to the LQG RI problem in
Equation (2.4) when the no-forgetting constraints do not bind.19 However, binding no-forgetting
constraints arise frequently. In fact, for any m < n, at least n − m constraints always bind by
Lemma 2.2. Here, we provide a solution for the problem with arbitrary n and m characteriz-
ing when and which constraints bind at any given time. The following proposition takes these
constraints into account and derives the following Karush-Kuhn-Tucker (KKT) conditions for the
solution.

Proposition 2.1. Suppose Σ0|−1 is strictly positive definite, and AA′ + QQ′ is of full rank. Then,

all the future priors {Σt+1|t}t≥0 are invertible under the optimal solution to the LQG Problem in

Equation (2.4), which is characterized by the following necessary conditions

ωΣ−1
t|t −Λt = Ω + βA′(ωΣ−1

t+1|t −Λt+1)A, ∀t ≥ 0, (2.8)

Λt(Σt|t−1 −Σt|t) = 0,Λt � 0, Σt|t−1 −Σt|t � 0, ∀t ≥ 0, (2.9)

Σt+1|t = AΣt|tA
′ + QQ′, ∀t ≥ 0, (2.10)

lim
T→∞

βT+1tr(ΛT+1ΣT+1|T ) = 0 (2.11)

where Λt and Σt|t−1 −Σt|t are simultaneously diagonalizable.

19He also provides a solution for a special case with n = 2 and m = 1 when these constraints do bind but does not
extend that solution to the general problem with arbitrary m and n.
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Proof. See Appendix A.5.

Here, Equation (2.8) is the first-order condition for the problem with eigenvalues of Λt being
the Lagrange multipliers on the no-forgetting constraints. Since we allow for binding no-forgetting
constraints, Λt is possibly non-zero and characterized by the complementarity slackness condition
in Equation (2.9). Furthermore, Equation (2.10) is the law of motion for the agent’s prior, and
Equation (2.11) is the transversality condition on information acquisition of the agent.

An essential aspect of the first-order condition in Equation (2.8) is its forward-looking nature.
In fact, the right-hand side of this equation captures the marginal benefit of reducing uncertainty
for the agent. Intuitively, this benefit has two components: a contemporaneous benefit for informa-
tion that captures how more information affects the agent’s instantaneous utility and a continuation
benefit that captures how information acquisition in period t will increase the agent’s payoff in the
future. Formally, defining Ωt as the right-hand side of the FOC in Equation (2.8), this decomposi-
tion can be stated as

Ωt ≡ Ω︸︷︷︸
contemporaneous benefit

+ βA′(ωΣ−1
t+1|t −Λt+1)A︸ ︷︷ ︸

continuation benefit

(2.12)

Moreover, while the novelty of Proposition 2.1 relative to the previous literature is to derive
the necessary KKT conditions under potentially binding no-forgetting constraints, their sufficiency
follows from two conditions: (1) affinity of the no-forgetting constraints in the sequence {Σt|t}t≥0

which is trivial, and (2) the concavity of the objective function in Σt|t,∀t ≥ 0. Since tr(ΩΣt|t)

is linear in Σt|t, it is straightforward to show that concavity of the objective function is equivalent
to the convexity of the cost function, which was first shown to be true by Sims (2003) for an
invertible A, and later by Miao, Wu, and Young (2020) for an invertible QQ′. Nonetheless, since
we consider a more general parameter space that only requires AA′ + QQ′ to be invertible, these
proofs are no longer applicable to our setting. The following proposition proves this result for our
case.

Proposition 2.2. The necessary conditions in Proposition 2.1 are sufficient for optimality.

Proof. See Appendix A.6.

With these necessary and sufficient conditions at hand, one can obtain the solution to the prob-
lem. Moving forward, we reformulate these conditions to derive a forward-looking Euler equation

that captures the contemporaneous and continuation value of information and a policy function

that, given the value of information, maps the state variable of the agent at time t (prior uncertainty
denote by Σt|t−1) to a choice variable (posterior uncertainty denoted by Σt|t). To present these two
equations as concisely as possible, we introduce the following two matrix operators:
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Definition 2.1. For a symmetric matrix X with spectral decomposition X = UDU′, we define

Max(X, ω) ≡ U max(D, ω)U′, Min(X, ω) ≡ U min(D, ω)U′.

where max(D, ω) and min(D, ω) operate on every element on the diagonal.

In short, Max(X, ω) preserves the X’s eigenvectors but replaces its eigenvalues with ω if they
are smaller than ω. Similarly, Min(X, ω) preserves X’s eigenvectors but replaces its eigenvalues
with ω if they are larger than ω.

Theorem 2.1. Let Ωt be the forward-looking component of the FOC in Proposition 2.1, as defined

in Equation (2.12). Then, Ωt is characterized by the following Euler equation:

Ωt = Ω + βA′Σ
− 1

2

t+1|t Min
(
Σ

1
2

t+1|tΩt+1Σ
1
2

t+1|t, ω
)

Σ
− 1

2

t+1|tA (2.13)

Furthermore, given Ωt, the optimal posterior covariance matrix, Σt|t, is characterized by the

following policy function:

Σt|t = ωΣ
1
2

t|t−1

[
Max

(
Σ

1
2

t|t−1ΩtΣ
1
2

t|t−1, ω
)]−1

Σ
1
2

t|t−1 (2.14)

Proof. See Appendix A.7.

As Ωt is the benefit matrix that captures how information interacts with the agent’s payoff, we
refer to Equation (2.13) as the information Euler equation that captures how the agent encodes
these benefits under her optimal information acquisition strategy. When β = 0, this benefit is
simply given by Ωt = Ω which captures how ~xt affects the agent’s instantaneous payoff.20 What
is new here is that with β > 0, Ωt has an extra term that captures the continuation value of knowl-
edge about ~xt, which depends on β itself, the persistence of the shocks A, and the information
acquisition policy of the agent in the next period.

Intuitively, information has marginal value only if (1) it generates higher payoff (captures by
Ωt), and (2) the agent is sufficiently uninformed (captured by Σt|t−1). Based on this intuition,
the policy function in Equation (2.14) shows that in acquiring information, the agent considers
the orthogonalized dimensions of the matrix Σ

1/2
t|t−1ΩtΣ

1/2
t|t−1. At the extensive margin, the agent

ignores dimensions whose eigenvalues (marginal values of information) are less than ω—i.e., the
agent is at a corner solution and her posterior uncertainty is the same as her prior uncertainty. On
the intensive margin, the agent acquires information in dimensions whose eigenvalues are larger
than ω, and her posterior uncertainty is lower than her prior uncertainty.

20The case of β = 0 collapses these results to the static cases studied in the literature prior to us (Fulton, 2018;
Kőszegi and Matějka, 2020; Miao, Wu, and Young, 2020).
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Together with the law of motion for the agent’s prior in Equation (2.10) as well as the transver-
sality condition in Equation (2.11), the information Euler equation in Equation (2.13) and the
policy function in Equation (2.14) characterize the solution to the dynamic rational inattention
problem.

Optimal Signals. While we have characterized the covariance matrix of the optimal posterior as
a function of the agent’s prior, the underlying assumption in Proposition 2.1 is that this posterior
is generated by a sequence of signals about ~xt. It is important to note that both the number of
these signals at a given time t, as well as how they load on different elements of the vector ~xt are
endogenous. Our next result characterizes these signals in a basis where the noise in these signals
are independent.21

Theorem 2.2. ∀t ≥ 0, let {di,t}1≤i≤n be the set of eigenvalues of the matrix Σ
1
2

t|t−1ΩtΣ
1
2

t|t−1 indexed
in descending order. Moreover, let {ui,t}1≤i≤n be orthonormal eigenvectors that correspond to
those eigenvalues. Then, the agent’s posterior belief at t is spanned by the following 0 ≤ kt ≤ m

signals
si,t = y′i,t~xt + zi,t, 1 ≤ i ≤ kt,

where kt is the number of the eigenvalues that are at least as large as ω, and for i ≤ kt, yi,t ≡
Σ
− 1

2

t|t−1ui,t is the loading of signal i on ~xt, and zi,t ∼ N (0, ω
di,t−ω ) is the agent’s rational inattention

error in signal i that is orthogonal to ~xt and all the other rational inattention errors.

Proof. See Appendix A.8.

In theory, an agent that learns about an n dimensional vector of shocks needs at most n signals,
one for each dimension. However, in an environment with costly information acquisition, not all
dimensions might hold enough value for information acquisition. To this end, we need a closer
look at what determines these values. Information in a particular dimension is more valuable if (1)
it provides more benefit to the agent (encoded in matrix Ωt) and (2) if the agent is more uncertain
about that dimension (encoded in matrix Σt|t−1). The eigenvalues and eigenvectors of the matrix
Σ

1/2
t|t−1ΩtΣ

1/2
t|t−1 capture these two forces. The eigenvalues are marginal values of information in a

given dimension. Moreover, the corresponding eigenvectors are the dimensions along which the
largest amount of information can be acquired for a given precision of a signal.

With this intuition in mind, Theorem 2.2 simply states that the agent’s optimal posterior at a
given time is generated by kt signals, where kt is the number of dimensions for which the marginal
value of information, defined as the eigenvalues of the matrix was Σ

1/2
t|t−1ΩtΣ

1/2
t|t−1, is larger than

its marginal cost, ω. Furthermore, for the dimensions that do have a higher marginal value than ω,

21Signals that generate a Gaussian posterior are not unique and, for instance, are equivalent up to linear transforma-
tions.
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the loading of the corresponding signal on ~xt is determined by the eigenvector associated with that
marginal value.

Finally, the endogenous loadings of signals on the shock vector ~xt captures the incentives of
the agent in garbling information in different dimensions to reduce the cost of information ac-
quisition. These incentives provide a microfoundation for information spillovers across different
actions (Sims, 2010), where information about an action can affect others, either through a sub-
jective correlated posterior (Σt|t−1) or through complementarities or substitutabilities in actions
captured by Ωt.22

Evolution of Optimal Beliefs and Actions. While Theorems 2.1 and 2.2 provide a representa-
tion for the optimal posteriors and signals, we are often interested in the evolution of the agents’
beliefs and actions. Our next proposition characterizes how beliefs and actions evolve over time.

Proposition 2.3. Let {(yi,t, di,t, zi,t)1≤i≤kt}t≥0 be defined as in Theorem 2.2, and let x̂t ≡ E[~xt|at]
be the mean of agent’s posterior about ~xt at time t. Then, optimal actions is ~at = H′x̂t, where x̂t
evolve according to:

x̂t = Ax̂t−1︸ ︷︷ ︸
prior belief

+
kt∑
i=1

Kalman gain vector of i︷ ︸︸ ︷
(1− ω

di,t
)︸ ︷︷ ︸

signal-to-noise
ratio of i

Σt|t−1yi,t ×
[
y′i,t(~xt −Ax̂t−1) + zi,t

]︸ ︷︷ ︸
surprise in signal i

Proof. See Appendix A.9.

2.3 Solution Algorithm, Computational Accuracy and Efficiency

Given an initial prior Σ−1|0, the solution to the LQG dynamic rational inattention problem in
Equation (2.4) is characterized by a sequence of matrices {Σt|t,Σt+1|t,Ωt}t≥0 that satisfy the pol-
icy function and Euler equation in Theorem 2.1, the law of motion for the priors in Equation (2.5)
as well as the transversality condition in Equation (2.11).

Our main methodological contribution here is that, based on our theoretical findings in Theo-
rems 2.1 and 2.2, we provide a new algorithm for characterizing the sequence of these matrices.
We also provide a software package for solving LQG dynamic rational inattention problems based
on this algorithm that is available as the DRIPs.jl package to the Julia programming language

22For instance, Kamdar (2018) documents that households have countercyclical inflation expectations—an obser-
vation that contradicts the negative comovement of inflation and unemployment in the data but is consistent with op-
timal information acquisition of households under substitutability of leisure and consumption. Similarly, Kőszegi and
Matějka (2020) show that complementarities or substitutabilities in actions give rise to mental accounting in consump-
tion behavior based on optimal information acquisition. While these two papers use static information acquisition, our
framework allows for dynamic spillovers through information acquisition.
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which is available at https://github.com/afrouzi/DRIPs.jl with a detailed software
documentation available at https://afrouzi.com/DRIPs.jl/dev.23

Table 1: Summary of Computing Times

Dimension DRIPs.jl Alternative Algorithms

Computing time for: n2 Time (s) Time (s) Source

Sims (2010)

Benchmark parameterization:
steady state 22 1.6× 10−4

transition dynamics 22 6.3× 10−4 1.08×103 Miao, Wu, and Young (2020)
“Golden rule” approximation 22 1.6× 10−4 3.00×100 Miao, Wu, and Young (2020)

Maćkowiak and Wiederholt (2009a)

Benchmark parameterization:
problem without feedback 202 1.83× 10−1 4.58×101 original (published)
problem with feedback 202 3.97× 100 1.72×102 replication files

Maćkowiak, Matějka, and Wiederholt (2018)

Price setting with rational inattention
without feedback 22 0.45× 10−3

with feedback 402 4.42× 10−1

Business cycle model with news shocks 402 9.40× 10−1

Notes: This table shows the summary of computing times for our replication of Sims (2010), Maćkowiak and Wiederholt
(2009a) and Maćkowiak, Matějka, and Wiederholt (2018) (discussed in Section 2.4, Appendix C.1 and Appendix C.2 respec-
tively). Tolerance level for convergence is 10−4 for the solution to rational inattention problem in all cases. Statistics from
Miao, Wu, and Young (2020) are taken directly from their manuscript. All other calculations were performed on a 2019
MacBook Pro with 16GB of memory, a 2.3 GHz processor and 8 cores (but no multi-core functionality was used).

We have also used our software package to replicate results from three canonical papers (Maćkowiak
and Wiederholt, 2009a; Sims, 2010; Maćkowiak, Matějka, and Wiederholt, 2018) that use different
methods for solving DRIPs and assess the accuracy and the efficiency of our algorithm. Our algo-
rithm produces identical results to each of these papers but is considerably faster than alternative
available solution methods. Table 1 reports a summary of computing times for these replications.
Moreover, all of our replication materials for these three papers are available along with our soft-
ware documentations at the link above and are also accessible as executable Jupyter notebooks.

Our algorithm solves DRIPs in two stages. First, we solve for the steady-state of a problem that
is independent of any initial prior belief. Second, we use a shooting algorithm on the information
Euler equation (Equation 2.13) and the law of motion for the prior (Equation 2.5) to characterize the
transition dynamics of the optimal information structure from an initial prior belief. In Appendix

23In addition to the Julia package, a Matlab code repository for the algorithm is also available at https://
github.com/choongryulyang/DRIPs.m.
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B, we describe these two stages in more detail.

2.4 Example: Transition Dynamics in Sims (2010)

In his Handbook of Monetary Economics chapter, Sims (2010) provides an example with two
shocks (n = 2) and one action (m = 1). He then characterizes the steady-state posterior covariance
matrix under the solution to the rational inattention problem. Here we study an extension of that
problem to investigate the transition dynamics of attention from an initial prior.

Background. The example in Sims (2010) is of a monopolist who chooses its price to match the
sum of two AR(1) processes, where one is more persistent than the other. The contemporaneous
profit of the monopolist is decreasing in the distance of its price from this linear sum and is given
by v(at, ~xt) = −(at − H′~xt)

2 where at is the agent’s action (here the monopolist’s price), and
~xt = A~xt−1 + Q~ut is an exogenous Gaussian process with two AR(1) shocks. Assuming the
agent discounts future payoffs at an exponential rate β, Equation (10) in Sims (2010) derives the
equivalent LQG rational inattention problem with the following parameterization:

β = 0.9, ω = 1, H =

[
1

1

]
, A =

[
0.95 0

0 0.4

]
, Q =

[ √
0.0975 0

0
√

0.86

]

Here, we have renamed the parameters so that the problem directly maps to our formulation in
Equation (2.4). Otherwise, the problem is the same as in Sims (2010).

Steady-state Solution. The steady-state information structure has appeared prior to our paper in
Sims (2010) and Miao, Wu, and Young (2020). Our objective here is to compare the solution based
on our algorithm with these benchmarks. Our solution method yields the following posterior and
prior covariance matrices for the steady-state information structure up to a tolerance of 10−4:

Σ̄ ≡ lim
t→∞

Σt|t =

[
0.3592 −0.1770

−0.1770 0.7942

]
, Σ̄−1 ≡ lim

t→∞
Σt+1|t =

[
0.4217 −0.0673

−0.0673 0.9871

]
(2.17)

This solution is close to the posterior covariance reported in Sims (2010).24 Moreover, it is almost
identical to the one reported in Miao, Wu, and Young (2020) who use conventional value function
iteration methods to calculate this solution.25

Transition Dynamics of the Optimal Information Structure. This section reports results for
the transition path of the optimal information structure from a highly certain prior. In particular, we
assume that in the steady-state of the information acquisition problem, the agent’s prior is affected

24Sims (2010) reports the following posterior covariance matrix: Σ̄ =

[
0.373 −0.174
−0.174 0.774

]
.

25In Miao, Wu, and Young (2020), the posterior covariance matrix, Σ̄, is
[

0.3590 −0.1769
−0.1769 0.7945

]
.
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by a one time “knowledge shock” that reduces their prior uncertainty to 1 percent of its long-run
value. We refer to period -1 as the period in which this knowledge shock happens. Thus, at time 0,
the agent’s prior about ~x0 conditional their initial information set S−1 is

~x0|S−1 ∼ N (0,Σ0|−1), Σ0|−1 = 0.01× Σ̄−1

where Σ̄−1 is the prior covariance matrix in the steady-state from Equation (2.17). By setting the
mean of this prior to 0, we are implicitly assuming that both components of the monopolist’s cost
were at their steady-state values when the knowledge shock happened. We use the shooting algo-
rithm outlined in Section 2.3 to solve for this transition path. It takes our code 630 microseconds
to obtain the solution (See Table 1 for details).

We start by characterizing the number of signals that the agent observes over time. It fol-
lows from Theorem 2.2 that this number is equal to the number of the eigenvalues of the matrix
Σ

1
2

t|t−1ΩtΣ
1
2

t|t−1 that are at least as large as ω. Since the dimension of the state in this problem is 2,
there are two eigenvalues, representing the two dimensions to which the agent can pay attention.
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Marginal value/cost of information

High eigenvalue (d1)
Low eigenvalue (d2)

Marginal cost (ω)
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Time

0.0

0.1

0.2

0.3

Signal-to-noise Ratio

Figure 1: Transition Dynamics of Attention

Notes: The Figure depicts the transition dynamics of attention in our extension of the example in Sims (2010).
The left panel shows the marginal values of information in orthogonal dimensions, and the right panel shows the
transition path of the Kalman gain for the optimal signal. Transition dynamics are from an initial prior Σ0|−1 =
0.01 × Σ−1, where Σ−1 is the steady state prior covariance matrix reported in Equation (2.17). All values are
constant in the steady-state.

The left panel of Figure 1 plots these eigenvalues over time. At time 0, none of these eigenval-
ues are larger than ω, which implies that the agent acquires no information right after the knowl-
edge shock. Starting at time 1, one of the eigenvalues is larger than 1, which implies that the agent
receives one signal starting at t = 1. It takes approximately ten periods for these eigenvalues to
reach their steady-state, at which point only one of them remains above ω. Therefore, even in the
steady-state, the agent receives only one signal.26

26This is consistent with Lemma 2.2 which specifies that the number of signals should be bounded above by the
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Moreover, in contrast to the steady-state of the information structure, the signal-to-noise ratio
of the agent’s signal varies over time on the transition path. According to Proposition 2.3, this
ratio is given by 1− ω

d1,t
. The right panel of Figure 1 plots this quantity after the knowledge shock

happens at time −1. At time 0, the signal-to-noise ratio is zero since the agent is not receiving
any signals. However, starting at t = 1, this quantity is positive and, in approximately ten periods,
converges to its steady-state from below. Accordingly, the knowledge shock at t = −1 has dynamic
consequences by crowding out information acquisition in later periods.

Impulse Response Functions. How important is the transition dynamics of attention? To answer
this question, we compare the impulse responses of the monopolist’s price to both shocks between
the steady-state and the transition path of the optimal information structure, and show they are
significantly different.

0 5 10 15
Time
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0.4

0.6

0.8

IRFs to Transitory Shock (ρ = 0.4)

Shock
Price (with transition dynamics)
Price (without transition dynamics)
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Time

0.0

0.1

0.2

0.3

IRFs to Persistent Shock (ρ = 0.95)

Figure 2: Impulse Response Functions in Steady State versus on the Transition Path

Notes: This figure the impulse response functions of the price with both the steady-state information structure
and the information structure on the transition path in our extension of the example from Sims (2010). Transition
dynamics are from an initial prior Σ0|−1 = 0.01 × Σ−1, where Σ−1 is the steady-state prior covariance matrix
reported in Equation (2.17). The agent consistently acquires less information relative to the steady-state on the
transition path, and the impulse responses are more muted. In particular, price does not respond to shocks at all at
time one as the agent receives no signals in that period.

Figure 2 plots these impulse response functions for a one standard deviation innovation to
both components of the monopolist’s cost, under both information structures. The main observa-
tion is that the impulse responses under the transition dynamics of the information structure are
significantly muted. Being highly certain after the knowledge shock at t = −1, the monopolist
temporarily substitutes away from information acquisition in later periods and pays little attention
to costs on the transition path. These muted responses mirror the smaller signal-to-noise ratio
of the monopolist’s signal on the transition path, and show that the monopolist is significantly

agent’s number of actions. Since the number of actions in this example is 1, the number of signals received by the
agent should always be less than or equal to 1.
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less responsive to shocks under the transition path of the information structure compared to the
steady-state one.

2.5 Relation to Alternative Solution Methods

The literature has focused on two different versions of the DRIPs in LQG settings in the past.
The problem that we study, as posed in Lemma 2.4, was introduced in Sims (2010) who derived
optimality conditions for the general problem when the solution is interior.27 In related work,
Miao, Wu, and Young (2020) also propose a solution method for transition dynamics of LQG
control problems based on value function iteration, but they do not derive any first-order optimality
conditions. Our contribution relative to these papers is that we fully characterize the optimality
conditions for transition dynamics, taking corner solutions into account. These corner solutions are
significant in economics because they micro-found why an agent might completely ignore specific
shocks (for instance, in our application in Section 3, they lead to an occasionally flat Phillips
curve). Our characterization of these optimality conditions is essential to our second contribution:
by directly iterating over our information Euler equation, we propose a novel solution method that
is significantly faster than value function iteration.

Another approach in formulating DRIPs in LQG settings abstracts away from transition dy-
namics and focuses on the steady-state information structure (Sims 2003; Maćkowiak, Matějka,
and Wiederholt 2018; Fulton 2018 and the “Golden rule approximation” in Miao, Wu, and Young
2020):

max
Σ�0
−tr(ΣΩ)− ω ln

( |Σ−1|
|Σ|

)
s.t.Σ−1 = AΣA′ + QQ′, Σ−1 � Σ. (2.18)

This problem does not capture transition dynamics, and its solution does not depend on β (the
discount factor), implicitly assuming that the agent is perfectly patient (in Appendix A.10 we show
that the solution to this problem collapses to the steady-state information structure of the dynamic
problem when β = 1). By assuming the discount factor is 1, this method also implies a different
steady-state information structure than the case when β < 1: (1) perfectly patient agents acquire
more information in general because they do not discount the dynamic benefits of information,
and (2) keeping the amount of information fixed, perfectly patient agents acquire more information
about dimensions that are more persistent or, in general, have higher continuation value. Although
this problem ignores transition dynamics and discounting, its appeal to the literature has been its
simplicity, as pointed out by Miao, Wu, and Young (2020), who show that it is significantly faster

27This proved to be a restrictive assumption. For instance, Maćkowiak, Matějka, and Wiederholt (2018) showed that
when the agent has one action, all but one of the no-forgetting constraints always bind (i.e., a firm that only chooses
one price would never pay attention to anything but their marginal cost). More generally, per Lemma 2.2, as long as
the number of actions is fewer than the number of shocks (m < n), the solution is not interior.
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to solve. However, our proposed solution method does not discriminate between the two problems
in terms of solution times and is equally fast in characterizing the steady-state solutions to both
problems (see Table 1 for a summary of computing times).

3 An Attention-Based Theory of the Phillips Curve

This section introduces an analytical general equilibrium model with rationally inattentive firms
and provides an attention-based theory of the Phillips curve.

3.1 Environment

Households. Consider a fully attentive representative household who supplies labor Lt in a com-
petitive labor market at the nominal wage Wt, trades nominal bonds with the net interest rate of it,
and forms demand over a continuum of varieties indexed by i ∈ [0, 1]. Formally, the representative
household’s problem is

max
{(Ci,t)i∈[0,1],Bt,Lt}∞t=0

Ef0

[ ∞∑
t=0

βt(log(Ct)− Lt)

]
(3.1)

s.t.

∫ 1

0
Pi,tCi,tdi+Bt ≤WtLt +Rt−1Bt−1 + Πt + Tt, Ct =

[∫ 1

0
C
θ−1
θ

i,t di

] θ
θ−1

where Eft [.] is the expectation operator of a fully informed household at time t, Ci,t is the demand
for variety i given its price Pi,t, Bt is the demand for nominal bonds at t that yield a nominal return
of Rt at t + 1, Πt is the aggregated profits of firms, and Tt is the net lump-sum transfers. Finally,
Ct is the final consumption good aggregated with a constant elasticity of substitution θ > 1 across
varieties.

For ease of notation, let Pt ≡
[∫ 1

0
P 1−θ
i,t di

] 1
1−θ

denote the aggregate price index and Qt ≡ PtCt

be the nominal aggregate demand in this economy. The solution to the household’s problem is then
summarized by:

Ci,t = Ct

(
Pi,t
Pt

)−θ
, ∀i ∈ [0, 1],∀t ≥ 0, (3.2)

1 = βRtEft
[
Qt

Qt+1

]
, ∀t ≥ 0, (3.3)

Wt = Qt, ∀t ≥ 0. (3.4)

Here, Equation (3.2) is the household’s demand for variety i at time t, Equation (3.3) is the con-
sumption Euler equation, and Equation (3.4) specifies the equilibrium relationship between the
nominal wage and the nominal aggregate demand.28

28This is the household’s labor supply condition given that the Frisch elasticity of labor supply is assumed to be
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Monetary Policy. For analytical tractability, we assume that the monetary authority targets the
growth of the nominal aggregate demand, which can be interpreted as targeting inflation and output
growth similarly:

log(Rt) = log(R̄) + φ∆qt − σuut, ut ∼ N (0, 1)

where R̄ ≡ β−1 is the steady-state nominal rate at zero trend inflation, qt ≡ log(Qt) is the log
of the nominal aggregate demand, and ut is an exogenous shock to monetary policy that affects
the nominal rates with a standard deviation of σu. We consider a more standard Taylor rule in our
quantitative model in Section 4.

Lemma 3.1. Suppose φ > 1. Then, in the log-linearized version of this economy, the nominal

aggregate demand is uniquely determined by the history of monetary policy shocks, and is charac-

terized by the random walk process, qt = qt−1 + σu
φ
ut.

Proof. See Appendix D.1.

Assuming that the monetary authority directly controls the nominal aggregate demand is a
popular framework in the literature to study the effects of monetary policy on pricing.29 We derive
this as an equilibrium outcome in Lemma 3.1 in order to relate the variance of the innovations to
the nominal demand to the strength with which the monetary authority targets its growth: a larger
φ stabilizes the nominal demand while a larger σu increases its variance.

Firms. Every variety i ∈ [0, 1] is produced by a price-setting firm. Firm i hires labor Li,t from a
competitive labor market at a subsidized wageWt = (1−θ−1)Qt where the subsidy θ−1 is paid per
unit of worker to eliminate steady-state distortions introduced by monopolistic competition (Galí,
2015, p. 73). Firms produce their product with a linear technology in labor, Yi,t = Li,t. Therefore,
for a given history {Pt, Qt}t≥0 and a set of prices {Pi,t}t≥0, the net present value of the firm’s
profits, discounted by the household’s marginal utility of consumption is

∞∑
t=0

βt
1

PtCt
(Pi,t − (1− θ−1)Qt)CtP

θ
t P
−θ
i,t =

− θ − 1

2

∞∑
t=0

βt(pi,t − qt)2 +O(‖(pi,t, qt)t≥0‖3) + terms independent of {pi,t}t≥0

where the second line is a second-order approximation with small letters denoting the logs of
corresponding variables.30 This expression provides a quadratic approximation of a monopolistic

infinite. This is a common assumption in monetary models (Golosov and Lucas, 2007). We relax this assumption in
our quantitative model in Section 4.

29See, for instance, Mankiw and Reis (2002), Woodford (2003), Golosov and Lucas (2007), Maćkowiak and
Wiederholt (2009a) and Nakamura and Steinsson (2010). This is also analogous to formulating monetary policy
in terms of an exogenous rule for money supply as in, for instance, Caplin and Spulber (1987) or Gertler and Leahy
(2008).

30For a detailed derivation of this second-order approximation see, for instance, Maćkowiak and Wiederholt (2009a).
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firm’s losses from not matching its marginal cost (qt in this setting.) Moreover, the approximation
shows that the magnitude of these losses is proportional to how elastic the firm’s demand is (θ−1).
Firms with more elastic demand lose more profits by charging a suboptimal price.

We assume prices are perfectly flexible, but firms are rationally inattentive and set their prices
based on imperfect information about shocks in the economy. The rational inattention problem of
firm i is then given by

V (p−1
i ) = max

{pi,t∈St}t≥0

∞∑
t=0

βtE[−θ − 1

2
(pi,t − qt)2 − ωI(pti, qt|pt−1

i )|p−1
i ]

where pti ≡ (pi,τ )τ≤t denotes the history of firm’s prices up to time t. It is important to note that
{pi,t}t≥0 is a stochastic process that is a sufficient statistic for the underlying signals that the firm
receives—a result that follows from Lemma 2.2.

Assuming that the distribution of q0 conditional on p−1
i is a Gaussian process, and noting that

{qt}t≥0 is itself a Gauss-Markov process, this problem satisfies the assumptions of Lemma 2.4.
Formally, let σ2

i,t|t−1 ≡ var(qt|pt−1
i ), σ2

i,t|t ≡ var(qt|pti) denote the prior and posterior variances of
firm i’s belief about qt at time t. Then, the corresponding LQG problem to the one in Lemma 2.4
is

V (σ2
i,0|−1) = max

{σi,t|t,σi,t+1|t}∞t=0

∞∑
t=0

βt

[
−(θ − 1)σ2

i,t|t − ω ln

(
σ2
i,t|t−1

σ2
i,t|t

)]

s.t. σ2
i,t+1|t = σ2

i,t|t +
σ2
u

φ2
(3.5)

0 ≤ σi,t|t ≤ σi,t|t−1. (3.6)

Here Equation (3.5) is the law of motion for the prior and Equation (3.6) is the no-forgetting
constraint that correspond to this problem.

3.2 Characterization of Solution

The solution to this problem follows from Proposition 2.1 and is characterized further in detail by
the following proposition.

Proposition 3.1. Firms pay attention to monetary policy shocks only if their prior uncertainty is

above a reservation level, σ2. Formally,

1. the policy function of a firm for choosing their posterior uncertainty is

σ2
i,t|t = min{σ2, σ2

i,t|t−1}, ∀t ≥ 0

where σ2 is the positive root of the following quadratic equation:
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σ4 +

[
σ2
u

φ2
− (1− β)

ω

θ − 1

]
σ2 − ω

θ − 1

σ2
u

φ2
= 0

2. the firm’s price evolves according to pi,t = pi,t−1 + κi,t(qt − pi,t−1 + ei,t) where κi,t ≡
max{0, 1− σ2

σ2
i,t|t−1

} is the Kalman-gain of the firm’s signal under optimal information struc-

ture and ei,t is the firm’s rational inattention error.

Proof. See Appendix D.2.

The first part of Proposition 3.1 shows that firms pay attention to nominal demand only when
they are sufficiently uncertain about it. In particular, for small enough levels of prior uncertainty—
where the marginal benefit of acquiring a bit of information falls below its marginal cost—the
no-forgetting constraint binds, and the firm receives no information. However, if the firm’s prior
uncertainty is higher than a reservation level, it acquires enough information to restore and maintain
that uncertainty level. The second part of Proposition 3.1 shows that in the region where the firm
does not pay attention to the nominal demand, its price is entirely insensitive to monetary shocks
as the implied Kalman-gain is zero.

Nonetheless, as the nominal demand follows a random walk, it cannot be that the firm stays
in the no-attention region forever. The variance of a random walk grows linearly with time, and
it would only be below the reservation uncertainty for a finite amount of time. Once the firm’s
uncertainty reaches this level, the problem enters its steady-state, and the Kalman-gain is

κi,t = κ ≡ σ2
u

φ2σ2 + σ2
u

. (3.7)

Comparative Statics. Here, we study how the reservation uncertainty σ2, and the steady-state
Kalman-gain κ, change with the model parameters.

Corollary 3.1. The reservation uncertainty of firms increases with ω and σu, and decreases with

φ, θ as well as β. Moreover, the steady-state Kalman-gain of firms increases with σu, θ and β, and

decreases with φ and ω.

Proof. See Appendix D.3.

While Corollary 3.1 holds for all values of the underlying parameters, a simple first order
approximation to the reservation uncertainty and steady-state Kalman-gain can be derived when
firms are perfectly patient (β → 1) and σ2

u is small relative to the cost of information ω:31

[σ2]β=1,σ2
u�ω ≈

σu
φ

√
ω

θ − 1
, [κ]β=1,σ2

u�ω ≈
σu
φ

√
θ − 1

ω
.

31This approximation becomes the exact solution to the analogous problem in continuous time as the variance of
the innovation is proportional to the length of time between two consecutive decisions.
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3.3 Aggregation

For aggregation, we make two assumptions: (1) firms all start from the same initial condition,
σ2
i,0|−1 = σ2

0|−1,∀i ∈ [0, 1]—which is without loss of generality if all firms start with the steady-
state prior as their initial prior—and (2) firms’ rational inattention errors are independently dis-
tributed.32

Notation-wise, we let πt ≡ log(Pt) − log(Pt−1) denote the aggregate inflation rate and yt ≡
log(Qt) − log(Pt) be the log of aggregate output. The following proposition derives the Phillips
curve of this economy.

Proposition 3.2. Suppose all firms have the same initial condition, σ2
0|−1 ≥ 0. Then,

1. the Phillips curve of this economy is

πt = max{0,
σ2
t|t−1

σ2
− 1}yt

where σ2
t+1|t = min{σ2, σ2

t|t−1}+ σ2
u

φ2 for all t ≥ 0.

2. For any given T ≥ 0, if σ2
T |T−1 < σ2, then πt = 0 and yt = yt−1 + σu

φ
ut.

3. For any given T ≥ 0, if σ2
T |T−1 ≥ σ2, then for all t ≥ T + 1,

πt = (1− κ)πt−1 +
κσu
φ
ut, yt = (1− κ)yt−1 +

(1− κ)σu
φ

ut

where κ ≡ σ2
u

φ2σ2+σ2
u

is the steady-state Kalman-gain of firms in Equation (3.7).

Proof. See Appendix D.4.

3.4 Implications for the Slope of the Phillips Curve

Proposition 3.2 shows that this economy has a Phillips curve with a time-varying slope, which is flat

if and when the no-forgetting constraint binds. When firms’ uncertainty is below the reservation
uncertainty, they pay no attention to changes in their input costs, and inflation does not respond
to monetary policy shocks. However, when the no-forgetting constraint binds, firms’ uncertainty
about their cost grows linearly with time and eventually reaches its reservation level, at which
point firms begin to pay attention to their costs again at a constant rate that is determined by the
steady-state information structure. This section analyzes this steady-state and then considers the
dynamic consequences of unanticipated disturbances (MIT shocks) to the model’s parameters.

32This assumption follows as a result from assuming that the cost of attention is Shannon’s mutual information
(Denti, 2015; Afrouzi, 2020). With other classes of cost functions, however, non-fundamental volatility can be
optimal—see Hébert and La’O (2020) for characterization of these cost functions.
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3.4.1 The Long-run Slope of the Phillips Curve

It follows from Proposition 3.2 that once the rational inattention problem settles in its steady-state,
the Phillips curve is given by πt = κ

1−κyt where κ is the steady-state Kalman-gain.33 Moreover,
the last part of Proposition 3.2 also shows that in this steady-state, both output and inflation follow
AR(1) processes whose persistence are given by 1− κ.

Thus, in the long-run, κ determines the Phillips curve slope and the magnitude and the persis-
tence of the real effects of monetary policy shocks in this economy. A lower value of κ leads to
a flatter Phillips curve, more persistent inflation and output processes, and higher monetary non-
neutrality. Firms with a lower κ are more inattentive and acquire information at a slower pace. It
takes longer for such firms to learn about changes in their input costs and respond to them. Mean-
while, firms’ output responds to compensate for the partial pass-through of input costs to prices.
Hence, more inattention leads to a larger and longer output response.

While comparative statics of κ with respect to the model parameters are derived in Corollary
3.1, in this section, we are particularly interested in how the rule of monetary policy affects the
Phillips curve slope and consequently the transmission of monetary policy to output and inflation.

3.4.2 The Aftermath of an Unexpectedly More Hawkish Monetary Policy

According to Corollary 3.1, κ increases with σu
φ

. We interpret this ratio as a measure for the
hawkishness of monetary policy. A higher value for φ (or a smaller value for σu

φ
) corresponds to a

more stabilized process for nominal demand and constitutes a more hawkish monetary policy.
What happens to the Phillips curve slope when the monetary policy is more hawkish? To

answer this question, we consider an economy where all firms are in the steady-state of their
information acquisition and study the transition dynamics of their attention when monetary policy
unexpectedly becomes more hawkish (σu

φ
decreases).

Corollary 3.2. Suppose the economy is in the steady state of its attention problem, and consider

an unexpected and permanent decrease in σu
φ

. Then, the economy immediately jumps to a new

steady state of the attention problem, in which (a) the Phillips curve is flatter and (b) output and

inflation responses are more persistent.

Proof. See Appendix D.5.

When monetary becomes unexpectedly more hawkish, nominal demand becomes more stable
because innovations to its process are less volatile. This lower volatility affects firms’ information

33In the steady-state of the rational inattention problem, σ2
t|t−1 = σ2 +

σ2
u

φ2 . Plugging this into the expression for the

Phillips curve in Part (1) of Proposition 3.2, we get πt =
σ2
u

φ2σ2 yt. It is straightforward from Equation (3.7) to verify

that κ
1−κ =

σ2
u

φ2σ2 .
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acquisition in two different ways. First, it increases the value of information because knowledge
about nominal demand depreciates less over time when its process is more stable. Second, firms
can afford a lower level of steady-state uncertainty with the same information acquisition rate (κ).
These two forces manifest themselves in a desire for lower σ2 and a lower steady-state information
acquisition rate (lower κ).

Therefore, when the shock happens, firms acquire enough information to jump to the new
steady-state because their uncertainty from the previous steady-state is above their new reservation
uncertainty. After that, firms also acquire information with a lower κ because their uncertainty
grows more slowly. Thus, when monetary policy becomes more hawkish, output and inflation are
more persistent, and the Phillips curve is flatter. These results are consistent with the flattening of
the Phillips curve since the onset of the Great Moderation.34 Our theory provides a new perspective
on this issue. Firms do not need to be attentive to monetary policy in an environment where the
policymakers follow a hawkish rule.

3.4.3 The Aftermath of an Unexpectedly More Dovish Monetary Policy

The model is non-symmetric in response to changes in the rule of monetary policy. While the
economy jumps to the new steady state of the attention problem after a decreases in σu

φ
, as shown

in Corollary 3.2, the reverse is not true. An unexpected increase in σu
φ

has different short-run
implications due to its effect on reservation uncertainty.

Corollary 3.3. Suppose the economy is in the steady state of its attention problem, and consider

an unexpected and permanent increase in σu
φ

. Then,
1. the Phillips curve becomes temporarily flat until firms’ uncertainty increases to its new reser-

vation level.

2. once firms’ uncertainty reaches to its new reservation level, the economy enters its new

steady state in which (a) the Phillips curve is steeper and (b) output and inflation responses

are less persistent.

Proof. See Appendix D.6.

An increase in σu
φ

makes the nominal demand more volatile and raises the reservation uncer-
tainty of firms. Hence, immediately after an unexpected increase in σu

φ
, firms find themselves

with an uncertainty below their new reservation level. The no-forgetting constraint begins to bind,
and firms temporarily stop paying attention to the shocks until their uncertainty grows to its new
reservation level. In the meantime, the Phillips curve is entirely flat; inflation is non-responsive to
shocks, and output responds one to one to changes in nominal demand.

34For evidence on the flattening of the Phillips curve, see e.g., Coibion and Gorodnichenko (2015b); Blanchard
(2016); Bullard (2018); Hooper, Mishkin, and Sufi (2020); Del Negro, Lenza, Primiceri, and Tambalotti (2020).
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Once firms’ uncertainty reaches its new reservation level, however, they start paying attention
at a higher rate to maintain this new level as the process is now more volatile. Thus, while a more
dovish policy leads to a temporarily flat Phillips curve, it eventually leads to a steeper Phillips
curve once firms adapt to their new environment.

Time

O
ut

pu
t

Time

In
fla

ti
on

Old Steady-state
Transition Path
New Steady-state

Figure 3: IRFs to a 1 S.D. Expansionary Shock When Policy Becomes More Dovish

Notes: This figure plots a numerical example for impulse responses of inflation and output to a one standard
deviation expansionary shock to monetary policy. The lines with square markers are under the steady-state infor-
mation structure. The lines with circle markers are the impulse responses after the policy becomes unexpectedly
more dovish at time 0, with the transition dynamics of the information structure. The lines with triangle markers
are the responses after the information structure converges to new steady-state with the more dovish policy. See
Proposition 3.2 and Corollary 3.3 for details.

Figure 3 illustrates this point in a numerical example by plotting three different sets of impulse
response functions. The light gray lines with square markers show the impulse responses under an
initial steady-state information structure for firms. The black lines show these impulse responses
after the monetary policy become unexpectedly more dovish in period zero. The main observation
is the temporary flatness of the Phillips curve that occurs in the first three periods. The shock
to dovishness of policy increases firms’ reservation uncertainty and crowds out their information
acquisition for three periods. After that, they begin to pay attention to shocks again, and inflation
sharply picks up to match nominal demand shock. Finally, the dark gray lines with triangle markers
show the impulse responses of output and inflation in the long-run after firms’ information structure
converges to its new steady-state. In this new steady-state, both inflation and output are more
volatile, and their impact responses are larger because nominal demand is more volatile than the
previous regime. However, these responses are less persistent as firms acquire information with a
higher κ.

These findings provide a new perspective on the recently perceived disconnect between infla-
tion and monetary policy. Our model offers an attention-based rationale for this disconnect, as-
suming that the Great Recession was followed by a period of higher uncertainty and more lenient
monetary policy.

27



3.5 Implications for Anchoring of Inflation Expectations

One of the most salient indicators to which monetary policymakers pay specific attention, espe-
cially under inflation targeting regimes, is the anchoring of inflation expectations. “Well-anchored”
inflation expectations are considered a sign of monetary policy success as they imply that the
publics’ inflation expectations are not very sensitive to temporary disturbances in economic vari-
ables. Moreover, inflation expectations have become more anchored in the U.S. since the onset of
the Great Moderation: inflation expectations are more stable and have lower sensitivity to short-run
fluctuations in the economic data (Bernanke, 2007; Mishkin, 2007).

The dependence of firms’ information acquisition incentives on the rule of monetary policy in
our framework provides a natural explanation for this trend. When monetary policy becomes more
hawkish, firms pay less attention to shocks. Hence, their beliefs become less sensitive to short-
run fluctuations in economic data, and their expectations become more anchored. The following
proposition characterizes the dynamics of firms’ inflation expectations in our simple model.

Proposition 3.3. Let π̂t ≡
∫ 1

0
Ei,t[πt]di denote the average expectation of firms about aggregate

inflation at time t. Then, in the steady-state of the attention problem,

π̂t = (1− κ)π̂t−1 +
κ2

(2− κ)(1− κ)
yt (3.8)

= 2(1− κ)π̂t−1 − (1− κ)2π̂t−2 +
κ2

2− κ
σu
φ
ut (3.9)

where κ is the steady-state Kalman-gain of firms in Equation (3.7).

Proof. See Appendix D.7.

Proposition 3.3 illustrates the degree of anchoring in firms’ inflation expectations from two
perspectives. Equation (3.8) derives the relationship between inflation expectations and output gap
and shows that inflation expectations’ sensitivity to output gap depends positively on κ. Equa-
tion (3.9) recasts this relationship in terms of the exogenous monetary policy shocks, which are the
sole drivers of short-run fluctuations in this economy. The AR(2) nature of these expectations in-
dicates the inertia that expectations inherit from firms’ imperfect information—the counterfactual
being full-information rational expectations, in which case both inflation and inflation expectations
are i.i.d. over time.35

Moreover, both the degree of the inertia in firms’ inflation expectations, which is determined
by 1−κ, as well as the sensitivity of firms’ inflation expectations to output gap or monetary policy

35With full-information rational expectations,
∫ 1

0
Ei,t[πt]di = πt = ∆qt = σuφ

−1ut.
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shocks depend on the conduct of monetary policy through κ. The following Corollary formalizes
this relationship.36

Corollary 3.4. Firms’ inflation expectations are less sensitive to both output gap and short-run

monetary policy shocks (are more “anchored”) and are more persistent when monetary policy is

more hawkish—i.e., σu
φ

is smaller.

Proof. See Appendix D.8.

4 Quantitative Analysis

In this section, we extend our simple model in Section 3 to a more quantitatively plausible setup.
Our objective is to assess whether our mechanism can generate a quantitatively relevant change in
the Phillips curve slope in a calibrated model.

Our exercise in this section is in the spirit of the literature that interprets the Great Moderation,
at least partially, through the lens of a shift in monetary policy in the post-Volcker era (Clarida,
Galí, and Gertler, 2000; Coibion and Gorodnichenko, 2011; Maćkowiak and Wiederholt, 2015). In
particular, we are interested in the following question: can the shift in the rule of monetary policy
in the post-Volcker era explain the decline in the Phillips curve slope, and if so, by how much?
To answer this question, we calibrate a quantitative version of our model with TFP and monetary
policy shocks to the U.S. inflation and output data in the post-Volcker era and examine whether the
model can generate a quantitatively relevant shift in the slope of the Phillips curve.

4.1 Model

We extend our simple model from Section 3 in three dimensions. First, we introduce two new
parameters on the household side for the inverse of the intertemporal elasticity of substitution
(σ) and the inverse of the Frisch elasticity of labor supply (ψ). Second, we allow for strategic
complementarities in pricing, which we excluded from the simple model but are quantitatively
important for inflation dynamics. Third, we relax our Taylor rule specification to allow for interest
rate smoothing and different central bank responses to inflation, output gap, and output growth.
Appendix F provides a detailed explanation of this setup and the definition of general equilibrium.
Here we present the log-linearized equilibrium conditions that characterize that equilibrium:

36While in our setup higher anchoring of the expectation are generated by a combination of higher order beliefs and
lower information acquisition on the part of firms, it is also important to note that higher persistence and anchoring
can be generated in a context that takes the role of strategic interactions into account (see, e.g., Angeletos and Huo,
2021).
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xt = Eft
[
xt+1 − σ−1 (it − πt+1)

]
+ Eft

[
∆ynt+1

]
∀t ≥ 0 (4.1)

it = ρit−1 + (1− ρ) (φππt + φxxt + φ∆y∆yt)− σuut ∀t ≥ 0 (4.2)

pi,t = Ei,t [pt + αxt] ∀t ≥ 0,∀i ∈ [0, 1]. (4.3)

Equation (4.1) is the standard log-linearized Euler equation for the household with full-information
rational expectations. Here, σ−1 is the intertemporal elasticity of substitution, ynt ≡

σ+ψ
1+ψ

at is the
log of the natural level of output with no frictions (which is uniquely determined by the productivity
shock), xt is the output gap defined as the log difference between output and its natural level, and
πt is inflation.

Equation (4.2) is the log-linearized Taylor rule, where ρ is the degree of interest rate smoothing,
yt is the log output, ut ∼ N (0, 1) is the monetary policy shock, and φπ, φx and φ∆y are the
responses of the central bank to inflation, output gap and output growth respectively.

Equation (4.3) shows that firm i tracks its nominal marginal cost, pt + αxt, where pi,t is the
firm’s log price at t, pt is the log of the aggregate price level, and α ≡ σ+ψ

1+ψθ
is the degree of

strategic complementarity. Moreover, Ei,t[·] is firm i’s expectation operator conditional on its time
t information set under the solution to its rational inattention problem.

4.2 Computing the Equilibrium

The main computational challenge is solving for firms’ rational inattention problem. This has two
stages: first, given a Markov state-space representation for pt + αxt we can use our algorithm
from Section 2. However, the process for pt + αxt is endogenous to the equilibrium decisions of
firms and households. Therefore, a second step is to find the equilibrium process for pt + αxt.
It is important to note that for these two steps to be consistent, we need to choose a state-space
representation for pt + αxt that is Markov.

We start by guessing for the MA representation of pt+αxt as a function of the productivity (εt)
and monetary policy (ut) shocks, which gives us a Markov representation for the process. We then
approximate the process with a truncated MA process and use this truncated process as the input
to our algorithm for DRIPs. We then solve for the implied state-space representations of the output
gap and aggregate price and update our guess for the MA process of pt + αxt. We repeat until
convergence. When truncating the MA process of pt + αxt, we approximate this process with an
MA(160) process. Therefore, the corresponding rational inattention problem has 12880 = 160×161

2

state variables. On average, for a given guess for this process, it takes 0.30 seconds for our DRIPs
algorithm to solve for the implied steady-state covariance matrix (that is of dimension 1602).37

37Truncated MA process are not necessarily the most efficient guesses for endogenous variables and one can gain
efficiency in the second step of this iterative process by using ARMA guesses, which reduce the number of state
variables (Maćkowiak, Matějka, and Wiederholt, 2018). However, MA processes assume a higher flexibility for the
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Appendix F.3 provides a detailed description of matrix representations, and our solution algorithm.

4.3 Calibration

Our benchmark model is calibrated at a quarterly frequency with a discount factor of β = 0.99

to the post-Volcker U.S. data ending at the onset of the Great Recession (1983–2007). Table 2
presents a summary of the calibrated values of the parameters. In the remainder of this section we
go over the details of our calibration strategy.

Table 2: Calibrated and Assigned Parameters

Parameter Value Moment Matched / Source

Panel A. Calibrated parameters
Information cost (ω) 0.70× 10−3 Cov. matrix of GDP and inflation
Persistence of productivity shocks (ρa) 0.850 Cov. matrix of GDP and inflation
S.D. of productivity shocks (σa) 1.56× 10−2 Cov. matrix of GDP and inflation

Panel B. Assigned parameters
Time discount factor (β) 0.99 Quarterly frequency
Elasticity of substitution across firms (θ) 10 Firms’ average markup
Elasticity of intertemporal substitution (1/σ) 0.4 Aruoba, Bocola, and Schorfheide (2017)
Inverse of Frisch elasticity (ψ) 2.5 Aruoba, Bocola, and Schorfheide (2017)
Taylor rule: smoothing (ρ) 0.946 Estimates 1983–2007 (Table G.1)
Taylor rule: response to inflation (φπ) 2.028 Estimates 1983–2007 (Table G.1)
Taylor rule: response to output gap (φx) 0.168 Estimates 1983–2007 (Table G.1)
Taylor rule: response to output growth (φ∆y) 3.122 Estimates 1983–2007 (Table G.1)
S.D. of monetary shocks (σu) 0.28× 10−2 Romer and Romer (2004)

Panel C. Counterfactual model parameters (Pre-Volcker: 1969–1978)
Taylor rule: smoothing (ρ) 0.918 Estimates 1969–1978 (Table G.1)
Taylor rule: response to inflation (φπ) 1.589 Estimates 1969–1978 (Table G.1)
Taylor rule: response to output gap (φx) 0.292 Estimates 1969–1978 (Table G.1)
Taylor rule: response to output growth (φ∆y) 1.028 Estimates 1969–1978 (Table G.1)
S.D. of monetary shocks (σu) 0.54× 10−2 Romer and Romer (2004)

Notes: The table presents the baseline parameters for the quantitative model. Panel A shows the calibrated parameters
which match the three key moments shown in Table 3. Panel B shows values and the source of the assigned model
parameters. Panel C shows the parameters for the counterfactual analysis in Section 4.5.

Assigned Parameters. We set the elasticity of substitution across firms to be ten (θ = 10), which
corresponds to a markup of 11 percent. We set the inverse of the Frisch elasticity (ψ) to be 2.5
and the elasticity of intertemporal substitution (1/σ) to be 0.4, which are consistent with estimates
presented in Aruoba, Bocola, and Schorfheide (2017).

solution when the length of truncation is large. Since our algorithm is fast enough to be able to handle a large number
of state variables, we use this structure in our solution method.
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Monetary Policy Rule(s). In our benchmark calibration, we choose the standard deviation of
monetary policy shocks (σu) to match the size of these shocks, as identified by Romer and Romer
(2004), for the period 1983–2007.38

Furthermore, for the parameters describing the monetary policy rule (ρ, φπ, φ∆y, φx), we esti-
mate the Taylor rule in Equation (4.2) using real-time U.S. data. Specifically, following Coibion
and Gorodnichenko (2011), we use the Greenbook forecasts of inflation and real GDP growth. The
measure of the output gap is also based on Greenbook forecasts. For our benchmark calibration,
we perform this estimation for the the post-Volcker (1983–2007) sample.39 The point estimates
are reported in Panel B of Table 2, and more detailed results including standard errors are reported
in Appendix Table G.1. These estimates point to strong long-run responses by the central bank
to inflation and output growth (2.03 and 3.12, respectively) and a moderate response to the output
gap (0.17).40

Finally, for our counterfactual analysis in later sections, we do a similar estimation of these
parameters for the pre-Volcker sample (1969–1978). The point estimates are reported in Panel C
of Table 2, and more detailed results, including standard errors, are reported in Appendix Table
G.1.

Calibrated Parameters. We calibrate the three remaining parameters of the model—marginal
costs of information processing (ω) as well as the persistence (ρa) and the size (σa) of productivity
shocks—jointly by targeting the covariance matrix of inflation and real GDP in post-Volcker U.S.
data.41 The three moments (variances of inflation and GDP with their covariance) identify the three
model parameters, as reported in Table 2.

The standard deviation of the productivity shocks (σa) is around 1.56 percent per quarter, which
is about six times larger than the standard deviation of the monetary policy shock (σu) for the post-
Volcker period.42 Moreover, the calibrated cost of information processing, ωI(., .), is 0.1 percent

38Original data on monetary policy shocks in Romer and Romer (2004) are available until 1996, while we use
extended data from Coibion, Gorodnichenko, Kueng, and Silvia (2017).

39Coibion and Gorodnichenko (2011) use data from 1983 through 2002 for the post-Volcker period estimation. We
extend the sample period until 2007. Another difference is that our specification allows for interest rate smoothing of
order one, while they consider the smoothing of order two.

40Because empirical Taylor rules are estimated using annualized rates while the Taylor rule in the model is expressed
at quarterly rates, we rescale the coefficient on the output gap in the model such that φx = 0.673/4 = 0.168. Also,
because we use the Greenbook forecast data prepared by staff members of the Fed a few days before each FOMC
meeting, the sample from 1969 through 1978 was monthly, whereas the sample from 1983 through 2007 was every
six weeks. Thus, we convert the estimated AR(1) parameters from monthly or six-week frequency to quarterly and
use the converted parameters for our model simulations.

41We detrend the log of real GDP and core CPI inflation data using quadratic trends to measure the covariance
matrix of output and inflation.

42Since we assume that only two shocks (productivity and monetary shocks) drive business cycles in our model,
the calibrated size of the productivity shocks is quite large compared to the previous business cycle literature. For
example, mean estimate of standard deviation of TFP shocks in Smets and Wouters (2007) is 0.45 percent.
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of firms’ steady-state real revenue.43 This small calibrated cost implies that imperfect information
models do not require large information costs to match the data.

4.4 Model Fit

Targeted Moments. Columns (1) and (2) of Table 3 reports our targeted moments both in the
data and as implied by the model. All three targeted moments are matched by the model.

Table 3: Targeted and Non-targeted Moments

Targeted moments Non-targeted moments
(Post-Volcker: 1983–2007) (Pre-Volcker: 1969–1978)

Moment (1) Data (2) Model (3) Data (4) Model

Standard deviation of inflation 0.015 0.015 0.025 0.025
Standard deviation of real GDP 0.018 0.018 0.022 0.020
Correlation(inflation, real GDP) 0.209 0.209 0.242 0.245

Notes: Columns (1) and (2) present moments of the data and simulated series from the model parameterized at
the baseline values in Table 2. Columns (3) and (4) compares the volatility of inflation and output gap and their
correlation in the US data for the pre-Volcker era to the counterparts from the counterfactual model simulation. See
Section 4.4 for details

Non-targeted Moments. To examine the model’s ability to capture the out-of-sample behav-
ior of GDP and inflation, following Maćkowiak and Wiederholt (2015), we compare the implied
variance-covariance matrix of GDP and inflation for the pre-Volcker era with the one measured
from the U.S. data.

To do so, we first replace the parameters related to monetary policy with the pre-Volcker era
estimates. Specifically, we replace the estimates of the Taylor rule for the post-Volcker period
with our estimates for the pre-Volcker period. Furthermore, we re-estimate the standard deviation
of monetary policy shocks (σu) using the pre-Volcker period monetary policy shock series from
Romer and Romer (2004). Our estimated values for these parameters are reported in Panel C of
Table 2, and indicate that monetary policy was less responsive to inflation and output growth in the
pre-Volcker period, and the monetary shocks were more volatile.

We then simulate the model under the calibrated values for the cost of attention and the process
for the TFP shocks and calculate the implied covariance matrix for GDP and inflation. Columns
(3) and (4) of Table 3 reports the model-generated moments and their analogs in the data. While
we only target the volatility of inflation and GDP for the post-Volcker period, our model matches
the high volatility of inflation and GDP in the pre-Volcker period.

43This number is on the lower end of the cost of pricing frictions that have been estimated in the literature. For
instance, Levy, Bergen, Dutta, and Venable (1997) estimate the cost of menu cost frictions as 0.7 percent of firms’
steady-state revenue.
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4.5 Quantification of the Change in the Slope of the Phillips Curve

Because the Phillips curve slope is endogenous in the model, the change in the rule of monetary
policy in the post-Volcker period would imply a potential change in this slope as well. In this
section, we study whether these changes are consistent with a flatter Phillips curve in the post-
Volcker period within the model. If so, is the mechanism quantitatively relevant?

The main challenge here is to constitute the right comparison between the model and the em-
pirical evidence on the Phillips curve slope. While the empirical literature uses the New Keynesian
Phillips curve (NKPC) as the equation guiding their estimation strategy, according to our model
the NKPC is misspecified. While the ideal case would be to re-estimate the Phillips curve based on
the specification subscribed by our model, such a strategy requires a time-series on firms’ expec-
tations that goes back long enough in time to cover both periods. Such a dataset does not exist for
the U.S. to the best of our knowledge.44 The alternative strategy that we employ here is to simulate
data from our model under the two specifications of monetary policy and run similar regressions
as in the empirical literature. These regressions are misspecified from our model’s perspective and
provide biased estimates due to an omitted variables bias issue. However, they constitute a fair
comparison to the evidence on the Phillips curve slope.

Formally, we simulate the model for 50,000 periods for both the pre- and post-Volcker periods
and estimate the following hybrid NKPC using GMM estimation.

πt = constant+ γEt[πt+1] + (1− γ)πt−1 + κxt + εt. (4.4)

We use four lags of both inflation and output gap as instruments. Column (1) in Table 4 shows the
estimates of the NKPC. The model predicts that the slope of the Phillips curve declined from 1.16
in the pre-Volcker era to 0.30 in the post-Volcker period—a 75% decline.

It worth noting that while we are interested in the relative slope in the two periods, the magni-
tude of these estimates slopes are well above the estimates in the empirical literature.45 However,
this is not necessarily inconsistent with our model. One challenge that the the empirical literature
faces is controlling for supply shocks that confound the estimates of the Phillips curve slope and

44An alternative dataset for testing our model’s implications might be the Survey of Professional Forecasters. In
fact, using this dataset, Coibion and Gorodnichenko (2015a) find that the estimated degree of informational rigidity
for professional forecasters reached its minimum level in 1983–84 and since then it has consistently increased, which
is consistent with the implications of our model. Moreover, as shown in Angeletos, Huo, and Sastry (2020), the
estimated informational rigidities are also higher in the post-Volcker period than in the pre-Volcker period when they
use unemployment as a running variable. Nonetheless, we are cautious against using the Survey of Professional
Forecasters data since previous literature has found that firms’ expectations formation process is very different from
that of professional forecasters’ (e.g., Coibion and Gorodnichenko, 2012, 2015a; Coibion, Gorodnichenko, and Kumar,
2018).

45For example, the estimated slope of the hybrid NKPC in Galí, Gertler, and López-Salido (2005) is 0.002. In Del
Negro, Lenza, Primiceri, and Tambalotti (2020), the slope estimates for the post-Volcker period range from 0 to 0.01.
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Table 4: Estimates of the New Keynesian Phillips Curve Using Simulated Data

(1) Output gap (2) Output (3) Adj. output gap

Pre-
Volcker

Post-
Volcker

Pre-
Volcker

Post-
Volcker

Pre-
Volcker

Post-
Volcker

Slope of NKPC (κ) 1.160 0.304 0.035 0.027 0.024 -0.012
(0.029) (0.007) (0.001) (0.001) (0.007) (0.003)

Forward-looking (γ) 0.666 0.612 0.549 0.499 0.554 0.512
(0.005) (0.003) (0.002) (0.001) (0.002) (0.001)

Notes: This table shows the estimation results of the NKPC using simulated data from the baseline model presented
in Section 4.2. Column (1) and (2) show the estimates of the NKPC in Equation (4.4) using the simulated output
gap and output data, respectively. Column (3) shows the estimates using the simulated output gap data, which
are adjusted by subtracting moving averages of natural level of output from actual output. Four lags of inflation
and output gap (or output) are used as instruments for the GMM estimation. A constant term is included in the
regressions but not reported. Newey-West standard errors are reported in parentheses.

introduces a downward bias (McLeay and Tenreyro, 2020). To see whether this type of downward
bias can bring us closer to these estimates we repeat our estimation exercise with imperfect mea-
sures of output gap in our model. Column (2) in Table 4 reports the estimated hybrid NKPC when
we use the output minus the steady-state output as our measure of the output gap—fully omitting
the supply shocks. In this case, the estimated slope for both periods is much smaller compared to
the estimates in Column (1), but there is still a 25% decline in the slope of the Phillips curve from
the pre- to post-Volcker period. Finally, in Column (3) we partially control for the supply shocks
by subtracting a moving average of the natural level of output from realized output to construct the
output gap. Again, the model predicts a decline in the slope of the Phillips curve from the pre- to
post-Volcker period.46

5 Concluding Remarks

We derive an information Euler equation that fully characterizes the transition path of dynamic
rational inattention problems in LQG settings and use our theoretical results to propose a novel and
fast solution method that significantly reduces the computing times for solving these problems. We
apply our findings to derive an attention-driven Phillips curve. Our theory of the Phillips curve puts
forth a new perspective on the flattening of the Phillips curve slope in recent decades. It suggests
that this was an endogenous response of the private sector to a more disciplined monetary policy
in the post-Volcker era, putting a larger weight on stabilizing nominal variables.

Our results also speak to an ongoing debate on the trade-off between stabilizing inflation and

46Appendix Table G.2 shows the estimates of both standard forward-looking NKPC and (unrestricted) hybrid NKPC
using different measures of the output gap from the simulated data. In all cases, the slope of the NKPC declined from
the pre- to post-Volcker era.
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maintaining a lower unemployment rate on the policy front. Our theory suggests that while a
dovish policy might seem appealing in the current climate where inflation seems hardly responsive
to monetary policy, once implemented, such a policy might have an adverse effect by steepening
the Phillips curve in the long-run.
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APPENDIX
FOR ONLINE PUBLICATION ONLY

A Proofs for Section 2

A.1 Proof of Lemma 2.1

Proof. First, note that observing {at}∞t=0 induces the same action payoffs over time as {St}∞t=0

because at any time t and for every possible realization of St, the agent gets a(St) – the optimal
action induced by that realization – as a direct signal. Suppose now that at is not a sufficient
statistic for St relative to X t. Then, we can show that {at}∞t=0 costs less in terms of information
than {St}∞t=0. To see this, note that for any t ≥ 1 and St, consecutive applications of the chain-rule
of mutual information imply

I(X t;St) = I(X t;St|St−1) + I(X t;St−1)

= I(X t;St|St−1) + I(X t−1;St−1) + I(X t;St−1|X t−1)︸ ︷︷ ︸
=0

,

where the third term is zero by availability of information at time t−1; St−1 ⊥ X t|X t−1. Moreover,
for t = 0 applying the chain-rule implies:

I(X0;S0) = I(X0;S0|S−1) + I(X0;S−1)

Thus,

∞∑
t=0

βtI(X t;St|St−1) =
∞∑
t=0

βt(I(X t;St)−I(X t−1;St−1)) = I(X0;S−1)+(1−β)
∞∑
t=0

βtI(X t;St).

Similarly, noting that a−1 is equal to S−1 by definition, we can show

∞∑
t=0

βtI(X t; at|at−1) = I(X0;S−1) + (1− β)
∞∑
t=0

βtI(X t; at).

Finally, note that X t → St → at form a Markov chain so that X t ⊥ at|St. A final application of
the chain-rule for mutual information implies

I(X t; at, St) = I(X t; at) + I(X t;St|at) = I(X t;St) + I(X t; at|St)︸ ︷︷ ︸
=0

.
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Therefore,

∞∑
t=0

βtI(X t;St|St−1)−
∞∑
t=0

βtI(X t; at|at−1) = (1− β)
∞∑
t=0

βt[I(X t;St)− I(X t; at)]

=
∞∑
t=0

βtI(X t;St|at) ≥ 0.

Hence, while {at}∞t=0 induces the same action payoffs as {St}∞t=0, it costs less in terms of informa-
tion costs, and induce higher total utility for the agent. Therefore, if {St}t≥0 is optimal, it has to
be that

I(X t;St|at) = 0,∀t ≥ 0

which implies St ⊥ X t|at and X t → at → St forms a Markov chain ∀t ≥ 0.

A.2 Proof of Lemma 2.2

Proof. The chain-rule implies I(X t; at|at−1) = I(X t; at, a
t−1|at−1) = I(X t; at|at−1). Moreover,

it also implies
I(X t;~at|at−1) = I(~xt;~at|at−1) + I(X t−1;~at|at−1, ~xt).

Since at = arg maxa E[u(a;Xt)|St] and given that at is a sufficient statistic for St, then optimality
requires that I(X t−1; at|at−1, ~xt) = 0. To see why, suppose not. Then, we can construct a an
information structure that costs less but implies the same expected payoff. Thus, for the optimal
information structure, this mutual information is zero, which implies

I(X t; at|at−1) = I(~xt;~at|at−1), ~at ⊥ X t−1|(~xt, at−1).

A.3 Proof of Lemma 2.3

Proof. We prove this Proposition by showing that for any sequence of actions, we can construct a
Gaussian process that costs less in terms of information costs, but generates the exact same payoff
sequence. To see this, take an action sequence {~at}t≥0, and let at ≡ {~aτ : 0 ≤ τ ≤ t}∪S−1 denote
the information set implied by this action sequence. Now define a sequence of Gaussian variables
{ât}t≥0 such that for t ≥ 0,

var(X t|ât) = E[var(X t|at)|S−1].
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Note that both these sequence of actions imply the same sequence of utilities for the agent since
they have the same covariance matrix by construction. So we just need to show that the Gaussian
sequence costs less. To see this note:

E

[
∞∑
t=0

βt
(
I(X t; at|at−1)− I(X t; ât|ât−1)

)
|S−1

]

=(1− β)E

[
∞∑
t=0

βt
(
I(X t; at)− I(X t; ât)

)
|S−1

]

=(1− β)E

[
∞∑
t=0

βt
(
h(X t|ât)− h(X t|at)

)
|S−1

]
≥ 0,

where the last inequality is followed from the fact that among the random variables with the same
expected covariance matrix, the Gaussian variable has maximal entropy.47

A.4 Proof of Lemma 2.4

Proof. We know from Lemma 2.3 that optimal posteriors, if the problem attains its maximum,
are Gaussian. So without loss of generality we can restrict our attention to Gaussian signals.
Moreover, since {~xt}t≥0 is Markov, we know from Lemma 2.2 that optimal actions should satisfy
~at ⊥ X t−1|(at−1, ~xt) where at = {~aτ}0≤τ≤t ∪ S−1. Thus, we can decompose:

~at − E[~at|at−1] = Y′t(~xt − E[~xt|at−1]) + ~zt, ~zt ⊥ (at−1, X t), ~zt ∼ N (0,Σz,t),

for some Yt ∈ Rn×m. Now, note that choosing actions is equivalent to choosing a sequence of
{(Yt ∈ Rn×m,Σz,t � 0)}t≥0.

Now, let ~xt|at−1 ∼ N (~xt|t−1,Σt|t−1) and ~xt|at ∼ N (~xt|t,Σt|t) denote the prior and posterior
beliefs of the agent at time t. Kalman filtering implies ∀t ≥ 0:

~xt|t = ~xt|t−1 + Σt|t−1Yt(Y
′
tΣt|t−1Yt + Σz,t)

−1(~at − ~at|t−1), ~xt+1|t = A~xt|t

Σt|t = Σt|t−1 −Σt|t−1Yt(Y
′
tΣt|t−1Yt + Σz,t)

−1Y′tΣt|t−1,

Σt+1|t = AΣt|tA
′ + QQ′.

Note that positive semi-definiteness of Σz,t implies that Σt|t � Σt|t−1. Furthermore, note that for
any posterior Σt|t � Σt|t−1 that is generated by fewer than or equal to m signals, there exists at
least one set of Yt ∈ R and Σv,t ∈ Sm+ that generates it. Moreover, note that any linear map of ~at,
as long as it is of rank m, is sufficient for ~xt|t by sufficiency of action for signals. So we normalize

47See Chapter 12 in Cover and Thomas (2012).
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~at = H′~xt|t which is allowed as H has full column rank. Additionally, observe that given at:

E[(~at − ~x′tH)(~at −H′~x′t)|at] = E[(~xt − ~xt|t)′HH′(~xt − ~xt|t)|at] = tr(ΩΣt|t), Ω ≡ HH′.

Thus, the RI Problem in Equation (2.1) becomes:

sup
{Σt|t∈Sn+}t≥0

−1

2

∞∑
t=0

βt
[
tr(Σt|tΩ) + ω ln

(
|Σt|t−1|
|Σt|t|

)]
s.t. Σt+1|t = AΣt|tA

′ + QQ′, ∀t ≥ 0,

Σt|t−1 −Σt|t � 0, ∀t ≥ 0

0 ≺ Σ0|−1 = var(~x0|S−1) ≺ ∞ given.

Finally, note that we can replace the sup operator with max because ∀t ≥ 0 the objective function
is continuous as a function of Σt|t and the set {Σt|t ∈ Sn+|0 � Σt|t � Σt|t−1} is a compact subset
of the positive semidefinite cone.

A.5 Proof of Proposition 2.1

Proof. We start by writing the Lagrangian. The problem has two set of constraints: (1) a set of
n(n+1)

2
equality constraints that are introduced by the law of motion for the priors in Equation (2.5)

(2) a set of n non-negativity constraints on the eigenvalues of the matrix Σt|t−1 − Σt|t. We let
Γt be a matrix whose k’th row is the vector of Lagrange multipliers on the k’th column of the
evolution of prior at time t (note that in matrix notation, each constraint is introduced twice by the
symmetry of the prior matrix, except for the ones on the diagonal. Hence, Γt is also symmetric
by the symmetry of the constraints). Moreover, let λt be the vector of shadow costs on the vector
of no-forgetting constraints, which we refer to as eig(Σt|t−1 −Σt|t) ≥ 0 where eig(.) denotes the
vector of eigenvalues of a matrix.

L0 = max
{Σt|t∈Sn+}t≥0

1

2

∞∑
t=0

βt[−tr(Σt|tΩ)− ω ln(|Σt|t−1|) + ω ln(|Σt|t|)

− tr(Γt(AΣt|tA
′ + QQ′ −Σt+1|t)) + λ′t eig(Σt|t−1 −Σt|t).]

Our goal is to take the FO(N)C conditions with respect to the elements of the matrix Σt|t. First,
we transform the non-negativity constraints in terms of Σt|t−1 −Σt|t instead of its eigenvalues:

λ′t eig(Σt|t−1 −Σt|t) = tr(diag(λt) diag(eig(Σt|t−1 −Σt|t)))
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where diag(.) is the operator that places a vector on the diagonal of a square matrix with zeros
elsewhere. Finally notice that for Σt|t such that Σt|t−1−Σt|t is symmetric and positive semidefinite,
there exists an orthonormal basis Ut such that

Σt|t−1 −Σt|t = Ut diag(eig(Σt|t−1 −Σt|t))U
′
t.

Now, let Λt ≡ Ut diag(λt)U
′
t and observe that

tr(diag(λt) diag(eig(Σt|t−1 −Σt|t))) = tr(Λt(Σt|t−1 −Σt|t)).

Moreover, note that complementary slackness for this constraint requires:

λ′t eig(Σt|t−1 −Σt|t−1) = 0, λt ≥ 0, eig(Σt|t−1 −Σt|t−1) ≥ 0

⇔ diag(λt) diag(eig(Σt|t−1 −Σt|t)) = 0, diag(λt) � 0,Σt|t−1 −Σt|t � 0

⇔Λt(Σt|t−1 −Σt|t) = 0,Λt � 0,Σt|t−1 −Σt|t � 0.

re-writing the Lagrangian we get:

L0 = max
{Σt|t∈Sn+}t≥0

1

2

∞∑
t=0

βt[−tr(Σt|tΩ)− ω ln(|Σt|t−1|) + ω ln(|Σt|t|)

− tr(Γt(AΣt|tA
′ + QQ′ −Σt+1|t)) + tr(Λt(Σt|t−1 −Σt|t)).]

Differentiating with respect to Σt|t and Σt|t−1 while imposing symmetry we have

Ω− ωΣ−1
t|t + A′ΓtA + Λt = 0, and ωβΣ−1

t+1|t − Γt − βΛt+1 = 0.

Now, replacing for Γt in the first order conditions we get the conditions in the Proposition.
One result that we have assumed in writing this expression is that Σt|t−1 is invertible, which

follows from the assumptions of the Proposition. The claim is:

Σt|t−1 � 0⇒ Σt+1|t = AΣt|tA
′ + QQ′ � 0,∀t ≥ 0.

To see why, suppose otherwise, then ∃w 6= 0 such that

w′(AΣt|tA
′ + QQ′)w = 0⇔ w′AΣt|tA

′w = w′QQ′w = 0.

Thus,
(Σ

1
2

t|tA
′w = 0) ∧ (Q′w = 0).
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Moreover, note that Σt|t is invertible because the cost of attention has to be finite:

ln

(
det(Σt|t−1)

det(Σt|t)

)
<∞⇒ det(Σt|t) > 0.

Hence, Σ
1
2

t|t is invertible, and we can write the above equations as:

(AA′w = 0) ∧ (QQ′w = 0)⇒ (AA′ + QQ′)w = 0

but since AA′+ QQ′ is invertible by assumption, this implies that w = 0 which is a contradiction
with w 6= 0. Thus, Σt+1|t has to be invertible as well.

Moreover, we have a terminal optimality condition that requires:

lim
T→∞

βT tr(ΓTΣT+1|T ) ≥ 0⇔ lim
T→∞

βT+1tr(ΛT+1ΣT+1|T ) ≤ 0.

Since both ΛT and ΣT+1|T are positive semidefinite, we also have tr(ΛT+1ΣT+1|T ) ≥ 0. Thus,
TVC becomes:

lim
T→∞

βT+1tr(ΛT+1ΣT+1|T ) = 0.

A.6 Proof of Proposition 2.2

Proof. Since the no-forgetting constraints are affine functions of the posterior variances, we only
need to show that the objective function is concave in (Σt|t)t≥0. Our first observation is that the
objective is separable in the elements of this vector. In particular, substituting Σt+1|t = AΣt|tA

′+

QQ′,∀t ≥ 0 in Equation (2.4), we can write the objective of the agent as

V0

(
(Σt|t)t≥0

)
= −ω

2
ln
(
|Σ0|−1|

)
+

1

2

∞∑
t=0

βt
[
−tr(Σt|tΩ)− βω ln

(
|AΣt|tA

′ + QQ′|
)

+ ω ln
(
|Σt|t|

)]
Therefore, since all Σt|t’s appear additively and independent of one another in the objective func-
tion, to show that the objective is concave in (Σt|t)t≥0, it suffices to show that it is concave with
respect to each Σt|t,∀t ≥ 0.

Moreover, since tr(Σt|tΩ) is linear in (and it second derivative is 0 with respect to) Σt|t, we
just need to show that for all t ≥ 0,

β ln
(
|AΣt|tA

′ + QQ′|
)
− ln

(
|Σt|t|

)
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is convex in Σt|t. Now, observe that for any Σt|t = Σ � 0, this function can be rewritten in the
following form:

β ln (|AΣA′ + QQ′|)− ln (|Σ|)

=β ln(|A(Σ− I)A′ + AA′ + QQ′|)− ln(|Σ|) (add and subtract AA′)

=β ln (|AA′ + QQ′|) (factor out AA′ + QQ′)

+β ln
(
|I + (Σ− I)A′(AA′ + QQ′)−1A|

)
− ln (|Σ|) (by Sylvester’s identity)

=β ln
(
|Σ−1 + (I−Σ−1)A′(AA′ + QQ′)−1A|

)
(factor out Σ)

−(1− β) ln (|Σ|) + β ln (|AA′ + QQ′|)

Now, ignoring the constant ln (|AA′ + QQ′|) and defining ∆ ≡ A′(AA′ + QQ′)−1A we just
need to show that

β ln(|Σ−1 + (I−Σ−1)∆|)− (1− β) ln(|Σ|) (A.1)

is a convex function of Σ. Notice that since for all β ∈ [0, 1], −(1 − β) ln (|Σ|) is itself a convex
function of Σ (Boyd and Vandenberghe, 2004, , p. 74), a sufficient condition for the convexity of
the function in Equation (A.1) is if the first term,

C(Σ) ≡ ln(|∆ + Σ−1(I−∆)|)

is convex (because it would imply that Equation (A.1) is the sum of two convex functions). To
show this is indeed the case, in the remainder of this proof we proceed to show that C(Σ) is the
pointwise limit of a sequence of convex functions, and therefore is itself convex. To this end,
we take advantage of the following two results. First, we rely on the following Lemma from
information theory (see, e.g., Kim and Kim, 2006, for a short and elegant proof):

Lemma A.1. For positive semi-definite matrices K and X , the function ln
(
|I +KX−1|

)
is convex in X .

Second, we rely on the following property of the matrix ∆:

Lemma A.2. For real-valued matrices A and Q, 0 � ∆ = A′(AA′ + QQ′)−1A � I, meaning that all

the eigenvalues of ∆ are between 0 and 1.

Proof. First, note that both AA′ and QQ′ are positive semi-definite as they are the each the product of a

real-valued matrix by its transpose. It immediately follows that ∆ is positive semi-definite.

Suppose now that λ is an eigenvalue of ∆. Then λ ≥ 0. Moreover, since eigenvalues of product of

two square matrices are independent of the order of multiplication (see, e.g., Bhatia, 2002), λ is also an

eigenvalue of AA′(AA′ + QQ′)−1, so there exists a vector ~z such that

AA′(AA′ + QQ′)−1~z = λ~z
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summing this with QQ′(AA′ + QQ′)−1~z on both sides, and moving terms around, we get that

QQ′(AA′ + QQ′)−1~z = (1− λ)~z

meaning that 1 − λ is an eigenvalue of QQ′(AA′ + QQ′)−1. Therefore, 1 − λ is also an eigenvalue of

Q′(AA′ + QQ′)−1Q, which is a symmetric, positive semi-definite matrix, so that 1 − λ ≥ 0. Thus, we

have established that 0 ≤ λ ≤ 1.

Now, consider the following spectral decomposition of ∆ = UDU′ (where D is diagonal and
U is an orthonormal matrix), and define the sequence ∆n ≡ U max{D, 1

n
}U′, for n ≥ 1. Notice

this sequence has the following two properties:

1. it converges to ∆ : limn→∞∆n = U max{D, 0}U′ = UDU′ = ∆ where the last equality
follows from the fact that elements of D are non-negative.

2. 0 ≺ 1
n
I � ∆n � I (since diagonal elements of max{D, 1

n
} are bounded between 1/n and

1). One notable implication of this property is that ∆n is invertible (as all of its eigenvalues
are strictly positive).

Lemma A.3. For all n ≥ 1, let Cn(Σ) ≡ ln(|∆n+Σ−1(I−∆n)|). Then, (1) the function Cn(Σ) is convex

for all n ≥ 1 and (2) Cn(Σ)→ C(Σ) pointwise.

Proof. Part 1 (convexity). Since ∆n is invertible, factor out ∆n to see

Cn(Σ) = ln(|I + Σ−1(∆−1
n − I)|) + ln(|∆n|)

Therefore, applying Lemma A.1, we know that this is a convex function if ∆−1
n − I � 0, which is true

because all the eigenvalues of ∆n are between 1/n and 1 (so that all the eigenvalues of ∆−1
n −I are between

0 and n− 1 ≥ 0).

Part 2 (pointwise convergence). Since ln(|X|) is continuous and ∆n → ∆, for any given Σ � 0, we

have

ln(|∆n + Σ−1(I−∆n)|)→ ln(|∆ + Σ−1(I−∆)|)⇒ Cn(Σ)→ C(Σ), ∀Σ � 0

Now, since the pointwise limit of a sequence of convex functions is convex, C(Σ) is convex on the
positive semi-definite cone.

A.7 Proof of Theorem 2.1

Proof. From the FOC in Proposition 2.1 observe that

ωΣ−1
t|t = Ωt + Λt ⇒ Σt|t−1 −Σt|t = Σt|t−1 − ω(Ωt + Λt)

−1.
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For ease of notation let Xt ≡ Σt|t−1−Σt|t. Multiplying the above equation by Ωt + Λt from right
we get

XtΩt −Σt|t−1Λt = Σt|t−1Ωt − ωI,

where we have imposed the complementarity slackness XtΛt = 0. Finally, multiply this equation
by Σ

1
2

t|t−1 from right and Σ
− 1

2

t|t−1 from left.48 We have

X̂tDt − Λ̂t = Dt − ωI (A.2)

where
X̂t ≡ Σ

− 1
2

t|t−1XtΣ
− 1

2

t|t−1, Λ̂t ≡ Σ
1
2

t|t−1ΛtΣ
1
2

t|t−1, Dt ≡ Σ
1
2

t|t−1ΩtΣ
1
2

t|t−1 (A.3)

Now, note that ΛtXt = XtΛt = 0 implies Λ̂tX̂t = X̂tΛ̂t = 0. Similarly, note that Xt and Λt

are positive semidefinite if and only if X̂t and Λ̂t are positive semidefinite, respectively. So we
need for two simultaneously diagonalizable symmetric positive semidefinite matrices Λ̂t and X̂t

that solve Equation (A.2).
It follows from these that X̂t, Λ̂t and Dt are simultaneously diagonalizable. To see this, con-

sider the following revisions of Equation (A.2):

X̂tDt = Dt + Λ̂t − ωI, −Λ̂tDt = Λ̂2
t − ωΛ̂t

where the equation on the left is a simple re-arrangement of Equation (A.2) and the equation on the
right is one where we have multiplied Equation (A.2) with Λ̂t from left. Note that the right hand
side of both of these equations are symmetric matrices. Therefore, the left hand side of the should
also be symmetric, which implies that Dt commutes with both X̂t and Λ̂t. Now, since all three
matrices are diagonalizable (because they are symmetric) and any two of them commute with one
another, they are simultaneously diagonalizable . Let α denote a basis in which these matrices are
diagonal. Then, we have

[X̂t − I]α[Dt]α = [Λ̂t − ωI]α.

Using complementarity slackness [Λ̂t]α[X̂t]α = 0, the constraint [X̂t]α � 0, and dual feasibility
constraint [Λ̂t]α � 0 it is straight forward to show that [Λt]α is strictly positive for the eigenvalues
(entries on the diagonal) of [Dt]α that are smaller than ω.

[Λ̂t]α = max(ωI− [Dt]α,0)⇔ Λ̂t = Max(ωI−Dt,0).

48Σ
1
2

t|t−1 exists since Σt|t−1 is positive semidefinite and Σ
− 1

2

t|t−1 exists since we assumed that the initial prior is
strictly positive definite.
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Now, using Equation (A.3), we get:

Λt = Σ
− 1

2

t|t−1 Max(ωI−Dt,0)Σ
− 1

2

t|t−1. (A.4)

Moreover, recall ωΣ−1
t|t = Ωt + Λt. Using the solution for Λt and Ωt = Σ

− 1
2

t|t−1DtΣ
− 1

2

t|t−1:

ωΣ−1
t|t = Σ

− 1
2

t|t−1 [Dt + Max(ωI−Dt,0)] Σ
− 1

2

t|t−1

= Σ
− 1

2

t|t−1 Max(Σ
1
2

t|t−1ΩtΣ
1
2

t|t−1, ω)Σ
− 1

2

t|t−1.

Inverting this gives us the expression in the statement of the theorem—the matrix is invertible
because all eigenvalues are bounded below by ω. Moreover, using the definition of Ωt in the
statement of the theorem, and the expression for Λt in Equation (A.4) we have:

Ωt = Ω + βA′(ωΣ−1
t+1|t −Λt+1)A

= Ω + βA′Σ
− 1

2

t+1|t(ωI−Max(ωI−Dt+1,0))Σ
− 1

2

t+1|tA

= Ω + βA′Σ
− 1

2

t+1|t Min(Σ
1
2

t+1|tΩt+1Σ
1
2

t+1|t, ω)Σ
− 1

2

t+1|tA.

A.8 Proof of Theorem 2.2

Proof. The upper boundm directly follows from Lemma 2.1. Recall from part 2 of Lemma 2.2 that
when {~xt} is a Markov process, then ~at ⊥ X t−1|(at−1, ~xt). Moreover, since actions are Gaussian
in the LQG setting, we can then decompose the innovation to the action of the agent at time t as

~at − E[~at|at−1] = Y′t(~xt − E[~xt|at−1]) + ~zt, ~zt ⊥ (X t, at−1)

where ~zt ∼ N (0,Σz,t) is the agent’s rational inattention error – it is mean zero and Gaussian. It
just remains to characterize Yt and the covariance matrix of ~zt. Now, since actions are sufficient
for the signals of the agent at time t, we have

E[~xt|at] = E[~xt|at−1] + Kt(~at − E[~at|at−1])

= E[~xt|at−1] + KtY
′
t(~xt − E[~xt|at−1]) + Kt~zt (A.5)

where Kt ≡ Σt|t−1Yt(Y
′
tΣt|t−1Yt + Σz,t)

−1 is the implied Kalman gain by the decomposition.
The number of the signals that span the agent’s posterior is therefore the rank of this Kalman
gain matrix. Moreover, note that if the decomposition is of the optimal actions, then the implied
posterior covariance should coincide with the solution:
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Σt|t = Σt|t−1 −KtY
′
tΣt|t−1 ⇒ KtY

′
t = I−Σt|tΣ

−1
t|t−1. (A.6)

Let UtDtU
′
t denote the spectral decomposition of Σ

1
2

t|t−1ΩtΣ
1
2

t|t−1. Then, using Theorem 2.1, we
have:

KtY
′
t = Σ

1
2

t|t−1Ut(I− ωMax(Dt, ω)−1)U′tΣ
− 1

2

t|t−1

=
n∑
i=1

max(0, 1− ω

di,t
)Σt|t−1yi,ty

′
i,t (A.7)

where di,t is the i’th eigenvalue in Dt and yi,t is the i’th column of the matrix Σ
− 1

2

t|t−1Ut. Notice

that for any i, yi,t = Σ
− 1

2

t|t−1ui,t is an eigenvector for ΩtΣt|t−1:

ΩtΣt|t−1yi,t = Σ
− 1

2

t|t−1(Σ
1
2

t|t−1ΩtΣ
1
2

t|t−1)ui,t = di,tΣ
− 1

2
i,t ui,t = di,tyi,t.

Moreover, note that only eigenvectors with eigenvalue larger than ω get a positive weight in span-
ning KtY

′
t, meaning that we can exclude eigenvectors associated with di,t ≤ ω. Formally, let Y+

t

be a matrix whose columns are columns of Yt whose eigenvalue is larger than ω. Let D+
t be the

diagonal matrix with these eigenvalues, and let Σ+
z,t be the corresponding principal minor of Σz,t.

Then,

Yt(Y
′
tΣt|t−1Yt + Σz,t)

−1Y′t =
n∑
i=1

max(0, 1− ω

di,t
)yi,ty

′
i,t =

∑
di,t≥ω

(1− ω

di,t
)yi,ty

′
i,t

= Y+
t (Y+′

t Σt|t−1Y
+
t + Σ+

z,t)
−1Y+′

t .

Now we just need Σ+
z,t to fully characterize the signals. For this, note that ∀i, j:

y′i,tΣt|t−1yj,t =

u′i,tui,t = 1 if i = j

u′i,tuj,t = 0 if i 6= j.

Thus, Y+′

t Σt|t−1Y
+
t = Ik where Ik is the k-dimensioanl identity matrix with k being the number

of eigenvalues in Dt that are larger than ω. Combining this with Equation (A.6) we have:

Σt|t−1 −Σt|t = Σt|t−1Y
+
t (Y+′

t Σt|t−1Y
+
t + Σ+

z,t)
−1Y+′

t Σt|t−1

⇒ Y+′

t (Σt|t−1 −Σt|t)Y
+
t = Y+′

t Σt|t−1Y
+
t (Y+′

t Σt|t−1Y
+
t + Σ+

z,t)
−1Y+′

t Σt|t−1Y
+
t

⇒ Σ+
z,t = (Ik −Y+′

t Σt|tY
+
t )−1 − Ik.
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Plugging in for Σt|t from Equation (2.14) we have:

Σ+
z,t = (Ik − ω(D+

t )−1)−1 − Ik = (ω−1D+
t − Ik)

−1.

Note that Σ+
z,t is diagonal where the i’th diagonal entry is 1

ω−1di,t−1
.

Thus, the agent’s posterior is spanned by the following k signals:

~st = Y+′~xt + ~zt, Y+′

t Σt|t−1Y
+
t = Ik, ~zt ∼ N (0, (ω−1D+

t − Ik)
−1).

A.9 Proof of Proposition 2.3

Proof. Let x̂t ≡ E[~xt|at]. Combining Equation (A.5) and Equation (A.7), we have

x̂t = E[~xt|at−1] +
n∑
i=1

max(0, 1− ω

di,t
)Σt|t−1yi,ty

′
i,t(~xt − E[~xt|at−1]) + Kt~zt

= Ax̂t−1 +
kt∑
i=1

(1− ω

di,t
)Σt|t−1yi,t(y

′
i,t(~xt −Ax̂t−1) + zi,t),

where kt is the number of the eigenvalues that are at least as large as ω. Notice that, as shown in
Appendix A.4, we normalize ~at = H′x̂t since any linear map of ~at, as long as it is of rank m, is
sufficient for x̂t by sufficiency of action for signals.

A.10 Steady-state Information Structure with β = 1

Here, we show that the solution to the problem in Equation (2.18) is characterized by the steady-
state version of our conditions in Proposition 2.1 when β = 1. The Lagrangian for the problem in
Equation (2.18) is:

max
Σ,Σ−1

−tr(ΩΣ)− ω ln(|Σ−1|) + ω ln(|Σ|)− tr(Γ(AΣA′ + QQ′ −Σ−1)) + λ′eig(Σ−1 −Σ)

where Γ is a symmetric matrix whose k’th row is the set of Lagrange multipliers on the constraints
imposed by the k’th column of Σ−1 = AΣA′ + QQ′. Now, consider the following Spectral
decomposition of Σ−1 −Σ:

Σ−1 −Σ = U diag(eig(Σ−1 −Σ))U′

where by the Spectral theorem, U is an orthonormal basis so that UU′ = U′U = I, and
diag(eig(Σ−1 −Σ)) denotes the diagonal matrix of the eigenvalues of Σ−1 −Σ.

Following the proof of Proposition 2.1, we can also do the following transformation: λ′ eig(Σ−1−
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Σ) = tr(Λ(Σ−1 −Σ)), where Λ ≡ U diag(λ)U′. Then, the KKT conditions are

Ω− ωΣ−1 + A′ΓA + Λ = 0, ωΣ−1
−1 − Γ−Λ = 0.

Replacing for Γ we have ωΣ−1 − Ω = Λ + A′(ωΣ−1
−1 − Λ)A with complementary slackness

conditions that Λ(Σ−1 − Σ) = (Σ−1 − Σ)Λ = 0 where Λ and Σ−1 − Σ are simultaneously
diagonalizable. Notice that these conditions are identical to the conditions outlined in Proposition
2.1, when we impose the steady-state and set β = 1.

B Solution Algorithm for DRIPs

In this Appendix, we provide a detailed outline of our Euler equation algorithm for solving the
transition dynamics and the steady state information structure of DRIPs.

Solving for the Steady-State Information Structure. The steady-state information structure is
a triple (Σ̄−1, Σ̄, Ω̄) that satisfy the stationary versions of the policy function, the law of motion
for the prior and the Euler equation (Equations 2.14, 2.5 and 2.13 respectively). We solve for this
triple using the following iterative algorithm, starting with initial guesses for Σ̄−1 = Σ̄−1,(0) and
Ω̄ = Ω̄(0).49 Then, in any iteration j ≥ 1:

1. Obtain the eigenvalue and eigenvector decomposition of

X(j) ≡ Σ̄
1
2

−1,(j−1)Ω̄(j−1)Σ̄
1
2

−1,(j−1)

2. Use Theorem 2.1 to update guesses:

Ω̄(j) = Ω + βA′Σ̄
− 1

2

−1,(j−1) Min
(
X(j), ω

)
Σ̄
− 1

2

−1,(j−1)A

Σ̄−1,(j) = ωAΣ̄
1
2

−1,(j−1)

[
Max

(
X(j), ω

)]−1
Σ̄

1
2

−1,(j−1)A
′ + QQ′

3. Repeat with j+=1 if ‖Σ−1,(j) −Σ−1,(j−1)‖ > tolerance.

Solving for the Transition Dynamics. The objective here is to solve for the transition path of
the triple (Σt|t,Σt+1|t,Ωt) to the steady-state solution from the previous step, starting from an
initial prior covariance matrix, Σ−1|0. We use a shooting algorithm to solve for this transition
path. In particular, we start with the guess that after some large T , the sequence has converged to
the steady-state solution. Therefore, conditional on this guess, we only need to solve for a finite
sequence

(Σt|t,Σt+1|t,Ωt)0≤t≤T , Σ−1|0 given.

49By default, our solution algorithm sets Ω̄(0) = HH′ and Σ̄(0) = AA′ + QQ′. However, the user can specify
alternative guesses, especially in iterative estimation exercises where a solution from a previous step might be closer
to the solution.
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We find this sequence using the following iterative procedure, starting from the initial guess that
for all t ∈ {0, 1, . . . , T}, Ωt,(0) = Ω̄:

1. At iteration j ≥ 1, given the sequence {Ωt,(j−1)}0≤t≤T and Σ−1|0,(j) ≡ Σ−1|0, iterate forward
in time using the policy function from Theorem 2.1 and the law of motion for priors: for t =

0 ↑ T ,

Σt+1|t,(j) ≡ ωAΣ
1
2

t|t−1,(j)

[
Max

(
Σ

1
2

t|t−1,(j)Ωt,(j−1)Σ
1
2

t|t−1,(j), ω

)]−1

Σ
1
2

t|t−1,(j)A
′ + QQ′

2. At iteration j ≥ 1, given the sequence {Σt+1|t,(j)}0≤t≤T∪{ΣT+1|T,(j) ≡ Σ̄−1} and ΩT+1,(j) ≡
Ω̄, iterate backward in time using the Euler equation from Theorem 2.1: for t = T ↓ 0,

Ωt,(j) ≡ Ω + βA′Σ
− 1

2

t+1|t,(j) Min

(
Σ

1
2

t+1|t,(j)Ωt+1,(j)Σ
1
2

t+1|t,(j), ω

)
Σ
− 1

2

t+1|t,(j)A

3. Repeat Steps 2 to 4 with j+=1 if ‖(Σt+1|t,(j))
T
t=0 − (Σt+1|t,(j−1))

T
t=0‖ > tolerance.

4. Finally, check if T was large enough for convergence to the steady-state. If not, repeat
starting from Step 1 with larger T .

C Replications

In this appendix, we present briefly two models we replicate in Section 2.3.

C.1 Replication of Maćkowiak and Wiederholt (2009a)

The rational inattention problem in Maćkowiak and Wiederholt (2009a) is

min
{∆̂i,t,ẑi,t}

E
[
(∆t − ∆̂i,t)

2
]

+

(
π̂14

π̂11

)2

E
[
(zi,t − ẑi,t)2

]
,

s.t. I({∆t}; {∆̂i,t}) + I({zi,t}; {ẑi,t}) ≤ κ, {∆t, ∆̂i,t} ⊥ {zi,t, ẑi,t}

where ∆t ≡ pt+
(
|π̂13|
|π̂11|

)
(qt−pt) is the profit-maximizing response to aggregate conditions and zi,t

is an idiosyncratic shock. Also, ∆̂i,t ≡ Ei,t[∆t] and ẑi,t ≡ Ei,t[zi,t] are firm i’s subjective expecta-
tion of ∆t and zi,t, respectively. I(·; ·) is Shannon’s mutual information and κ is a fixed capacity
of processing information. Lastly, notice that aggregate price pt =

∫ 1

0
∆̂i,tdi and exogenous shock

processes are defined:

qt = ρqqt−1 + νq,t, νq,t ∼ N (0, σ2
q ), zi,t = ρzzi,t−1 + νz,t, νz,t ∼ N (0, σ2

z).

To solve the model using our method, we translate the problem above into a DRIPs structure.
The most efficient way, due to the independence assumption, is to write it as the sum of two
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DRIPs: one that solves the attention problem for the idiosyncratic shock, and one that solves the
attention problem for the aggregate shock which also has endogenous feedback. Moreover, since
the problem above has a fixed capacity, instead of a fixed cost of attention (ω) as in DRIPs pacakge,
we need to iterate over ω’s to find the one that corresponds with κ. Lastly, the attention problem in
this model coincides with our model when β = 1. We have included a complete replication of the
figures and graphs from Maćkowiak and Wiederholt (2009a) online at https://afrouzi.com/
DRIPs.jl/dev/examples/ex3_mw2009/ex3_Mackowiak_Wiederholt_2009/.

C.2 Replication of Maćkowiak, Matějka, and Wiederholt (2018)

We describe the model of price-setting in Maćkowiak, Matějka, and Wiederholt (2018) with and
without endogenous feedback in firms’ optimal prices.

C.2.1 A Model of Price-Setting

There is a measure of firms indexed by i ∈ [0, 1]. Firm i chooses its price pi,t at time t to track its
ideal price p∗i,t. Formally, her flow profit is −(pi,t − p∗i,t)2.

Without Endogenous Feedback We first consider the case without endogenous feedback in the
firm’s optimal price by assuming that p∗i,t = qt where ∆qt = ρ∆qt−1 + ut with ut ∼ N (0, σ2

u).
Then, the state-space representation of the problem is

~xt =

[
qt

∆qt

]
=

[
1 ρ

0 ρ

]
︸ ︷︷ ︸

A

~xt−1 +

[
σu

σu

]
︸ ︷︷ ︸

Q

ut, p∗i,t =

[
1

0

]
︸ ︷︷ ︸

H

′

~xt

Endogenous Feedback with Strategic Complementarity Now we consider the case where
there is general equilibrium feedback with the degree of strategic complementarity α. Firm i’s
optimal price is p∗i,t = (1 − α)qt + αpt where pt ≡

∫ 1

0
pi,tdi and ∆qt = ρ∆qt−1 + ut with

ut ∼ N (0, σ2
u). Note that now the state space representation for p∗i,t is no longer exogenous and is

determined in the equilibrium. However, we know that this is a Guassian process and by Wold’s
theorem we can decompose it to its MA(∞) representation, p∗i,t = Φ(L)ut, where Φ(.) is a lag
polynomial and ut is the shock to nominal demand. Here, we have guessed that the process for p∗i,t
is determined uniquely by the history of shocks which requires that rational inattention errors of
firms are orthogonal. Our objective is to find Φ(.).

We approximate MA(∞) processes with truncation. In particular, for stationary processes, we
can arbitrarily get close to the true process by truncating MA(∞) processes to MA(T ) processes.
Our problem here is that p∗i,t has a unit root and is not stationary. We can bypass this issue by re-
writing the state space in the following way: p∗i,t = φ(L)ũt where ũt = (1−L)−1ut =

∑∞
j=0 ut−j .

Here, ũt−j is the unit root of the process and we have differenced out the unit root from the lag
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polynomial, and φ(L) = (1 − L)Φ(L). Notice that since the original process was difference
stationary, differencing out the unit root means that φ(L) is in `2, and the process can now be
approximated arbitrarily precisely with truncation.

C.2.2 A Business Cycle Model with News Shocks

In this subsection, we describe the business cycle model with news shocks in Section 7 in Maćkowiak,
Matějka, and Wiederholt (2018).

The techonology shock, zt, follows AR(1) process, zt = ρzt−1 +σεt−k, and the total labor input
is nt =

∫ 1

0
ni,tdi. Under perfect information, the households chooses the utility-maximizing labor

supply, all firms choose the profit-maximizing labor input, and the labor market clearing condition
is, 1−γ

ψ+γ
wt = 1

α
(zt − wt). Then, the market clearing wages and the equilibrium labor input are:

wt =
1
α

1−γ
ψ+γ

+ 1
α

zt ≡ ξzt, nt =
1

α
(1− ξ)zt.

Firms are rationally inattentive and want to keep track of their ideal price,

n∗t =
1

α
zt −

1

α

ψ + γ

1− γ
nt.

Then, firm i’s choice depends on its information set at time t and ni,t = Ei,t[n
∗
t ].

Note that now the state space representation for n∗t is determined in the equilibrium. As we de-
scribe above, we can decompose it to its MA(∞) representation by Wold’s theorem: n∗t = Φ(L)εt

where Φ(.) is a lag polynomial and εt is the shock to technology. We have again guessed that the
process for n∗t is determined uniquely by the history of technology shocks. Then, we transform the
problem to a state space representation. We have included a complete replication of the figures and
graphs from Maćkowiak and Wiederholt (2009a) online at https://afrouzi.com/DRIPs.jl/
dev/examples/ex5_mmw2018/ex5_Mackowiak_Matejka_Wiederholt_2018/.

D Proofs for Section 3

D.1 Proof of Lemma 3.1

Proof. The log-linearized Euler equation from the household side is

log(Rt) = log(β−1) + Et[∆qt+1].

Combining this with the monetary policy rule, we have

∆qt = φ−1Eft [∆qt+1] +
σu
φ
ut.
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Iterating this forward and noting that limh→∞ φ
−hEft [∆qt+h] = 0 due to φ > 1, we get the result

in the Lemma.

D.2 Proof of Proposition 3.1

Proof. Part 1. For ease of notation we drop the firm index i in the proof. The FOC in Proposition
2.1 in this case reduces to

λt = 1− θ +
ω

σ2
t|t
− βω

σ2
t+1|t

+ βλt+1.

Since the problem is deterministic and the state variables grows with time when the constraint
is binding, then there is a t after which the constraint does not bind. Given such a t, suppose
λt = λt+1 = 0, then noting that σ2

t+1|t = σ2
t|t + σ2

uφ
−2, the FOC becomes:

σ4
t|t +

[
σ2
u

φ2
− (1− β)

ω

θ − 1

]
σ2
t|t −

ω

θ − 1

σ2
u

φ2
= 0

Note that given the values of parameters, this equation does not depend on any other variable than
σ2
t|t (in particular it is independent of the state σ2

t|t−1). Hence, for any t, if λt = 0, then the σ2
t|t = σ2,

where σ2 is the positive root of the equation above. However, for this solution to be admissible it
has to satisfy the no-forgetting constraint which holds only if σ2 ≤ σ2

t|t−1. Thus,

σ2
t|t = min{σ2

t|t−1, σ
2}.

Part 2. The Kalman-gain can be derived from the relationship between prior and posterior uncer-
tainty:

σ2
i,t|t = (1− κi,t)σ2

i,t|t−1 ⇒ κi,t = 1−min{1, σ2

σ2
i,t|t−1

} = max{0, 1− σ2

σ2
i,t|t−1

}. (D.1)

D.3 Proof of Corollary 3.1

Proof. Follows from differentiating the expression for σ2 in Proposition 3.1.

D.4 Proof of Proposition 3.2

Proof. Part 1. Recall from the proof of Proposition 3.1 that

pi,t = pi,t−1 + κi,t(qt − pi,t−1 + ei,t)

Aggregating this up and imposing κi,t = κt since all firms start from the same uncertainty and
solve the same problem, we get:

πt =
κt

1− κt
yt.
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Plug in κt from Equation (D.1) to get the expression for the slope of the Phillips curve.
Part 2. In this case the Phillips curve is flat so it immediately follows that πt = 0. Moreover,

since πt + ∆yt = ∆qt, plugging in πt = 0, we get yt = yt−1 + ∆qt.
Part 3. If σ2

T |T−1 ≥ σ2, then ∀t ≥ T + 1, σ2
t|t = σ2 and σ2

t|t−1 = σ2 + σ2
uφ
−2. Hence, for

t ≥ T + 1, the Phillips curve is given by πt = κ
1−κyt. Combining this with πt + ∆yt = ∆qt we get

the dynamics stated in the Proposition.

D.5 Proof of Corollary 3.2

Proof. The jump to the new steady state follows from the result in Corollary 3.1 that σ2 increases
with σu

φ
. The comparative statics follow from the fact that κ is the positive root of

βκ2 + (1− β + ξ)κ− ξ = 0

where ξ ≡ σ2
u(θ−1)
φ2ω

. It suffices to observe that κ decreases with ξ, and ξ increases with σu
φ

.

D.6 Proof of Corollary 3.3

Proof. The transition to the new steady state follows from the fact that reservation uncertainty
increases with a positive shock to σ2. The policy function of the firm in Proposition 3.1 that firms
would wait until their uncertainty reaches this new level. Comparative statics in the steady state
follow directly from Corollary 3.1.

D.7 Proof of Proposition 3.3

Proof. Note that in the steady state of the attention problem, inflation and nominal demand, ~st ≡[
qt

πt

]
, jointly evolve according to

~st =

[
1 0

0 1− κ

]
︸ ︷︷ ︸

≡As

~st−1 +

[
σu
φ
κσu
φ

]
︸ ︷︷ ︸
≡Qs

ut

Moreover, given that we know that a firm’s history of prices is a sufficient statistics for their infor-
mation set at that time, we can solve for their belief about the vector ~st by applying the Kalman
filtering: ∫ 1

0

E[~st|pti]di =

∫ 1

0

E[~st|pt−1
i ]di+ Ks(qt − E[qt|pt−1

i ])
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It follows that the steady-state covariance matrix, Σs ≡ limt→∞ var(~st|pt−1
i ), solves the following

Riccati equation:

Σs = AsΣsA
′
s − κ

Σse1e
′
1Σs

e′1Σse1

where κ is the steady-state Kalman-gain of firms in Equation (3.7) and e′1 ≡ (1, 0). The solution
to this Riccati equation is given by

Σs ≡

[
1
κ

1
2−κ

1
2−κ

(3−2κ)κ
(2−κ)3

]
σ2
u

φ2

which then implies that the Kalman-gain vector, Ks is given by

Ks = κ
Σse1e

′
1

e′1Σse1

=

[
κ
κ2

2−κ

]
e1

Thus, noticing that the firms average inflation expectations is given by the second element of the
vector

∫ 1

0
E[~st|pti]di, we have

π̂t = (1− κ)π̂t−1 +
κ2

2− κ
(qt − pt−1) = (1− κ)π̂t−1 +

κ2

(2− κ)(1− κ)
yt

where in the second line we have plugged in yt ≡ qt−pt and the Phillips curve πt = κ
1−κyt. Finally,

multiplying the lag of the above equation by 1− κ and differencing them out we have

π̂t − (1− κ)π̂t−1 = (1− κ)π̂t−1 − (1− κ)2π̂t−2 +
κ2

(2− κ)(1− κ)
(yt − (1− κ)yt−1)

= (1− κ)π̂t−1 − (1− κ)2π̂t−2 +
κ2

2− κ
σu
φ
ut.

D.8 Proof of Corollary 3.4

Proof. Note that the sensitivity of firms’ inflation expectations to a one standard deviation shock
to monetary policy (σu

φ
ut) is, ∂π̂t

∂(σu
φ
ut)

= κ2

2−κ . Now, note that

∂
(

∂π̂t
∂(σu

φ
ut)

)
∂
(
σu
φ

) =
4κ− κ2

(2− κ)2
=

[
1 +

(
2

2− κ

)2
]

∂κ

∂
(
σu
φ

) < 0

where the negative sign follows from the fact that κ is decreasing in σu
φ

(Corollary 3.1).

E Approximation of Firms’ Profit Function

Consider a firm with the following net present value of its profits at time 0:
∞∑
t=0

βtΠ(Pt,Wt, Xt)
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where Π(Pt,Wt, Xt) = elog(Xt)−θ log(Pt)(elog(Pt) − (1 − θ−1)elog(Wt)). Here, Pt is the firm’s price
Xt scales the profit function (in both our simple and quantitative models Xt = P̄ θ

t Yt(Ct/C0)−σ

where P̄t is the aggregate price, and Yt is the aggregate output, (Ct/C0)−σ is stochastic part of the
discount factor). Moreover, Wt is the firm’s marginal cost which corresponds to the nominal wage
in the simple model, and nominal wage scaled by productivity in the quantitative model.

For any pair of Wt and Xt, note that

Wt = arg max
P

Π(Pt,Wt, Xt)⇔ Π1(Wt,Wt, Xt) = 0

Therefore, in the non-stochastic steady-state P = W for this firm. Now taking a second-order ap-
proximation to the function L(Pt,Wt, Xt) ≡ Π(Pt,Wt, Xt)−Π(Wt,Wt, Xt) around these steady-
state values, we have

L(Pt,Wt, Xt) =
1

2
Π11(log(Pt)

2 − log(Wt)
2) + Π12 log(Wt)(log(Pt)− log(Wt))

+ Π13 log(Xt)(log(Pt)− log(Wt)) +O(‖log(Xt), log(Wt), log(Pt)‖3) (E.1)

where Π1n, n ∈ {1, 2, 3} denotes second order derivatives of the profit function with respect to log
price, log price and log wage, and log price and log(X) around teh approximation point. Now, also
note that since Wt maximizes the profit function for any Wt and Xt, we have

Π1(Wt,Wt, Xt) = 0⇒ Π11 log(Wt) + Π12Wt + Π13Xt +O(‖log(Xt), log(Wt)‖2) = 0

Combining this with Equation (E.1) we have

Π(Pt,Wt, Xt) = L(Pt,Wt, Xt) + Π(Wt,Wt, Xt) =
1

2
Π11(log(Pt)− log(Wt))

2

+O(‖log(Wt), log(Xt), log(Pt)‖3) + terms independent of Pt

Finally, to calculate Π11, note that

Π1 = −θelog(X)−θ log(P )(elog(P ) − (1− θ−1)elog(W )) + elog(X)−(θ−1) log(P ),

Π11 = −θΠ1 − (θ − 1)elog(X)−(θ−1) log(P )

Now assuming that the aggregate price is the same as the firm’s individual price in the stochastic
steady-state, log(X)− (θ− 1) log(P ) = log(PY C−σ) = log(Q) where Q is the steady-state value
of nominal demand. Moreover, since Π1 = 0 in the steady-state, we have Π11 = −(θ − 1)Q.
Hence, normalizing the steady-state value of nominal demand to 1:

∞∑
t=0

βtΠ(Pt,Wt, Xt) = −1

2

∞∑
t=0

βt
[
(θ − 1)(log(Pt)− log(Wt))

2 +O(‖log(Pt)‖3)
]

+ terms independent of {Pt}t≥0
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F Setup of the Quantitative Model

F.1 Environment

Household. The representative household’s problem is similar to the one in Equation (3.1) with
two extensions. First, we add two new parameters to preferences that capture the intertemporal
elasticity of substitution and the Frisch elasticity of labor supply. Second, we assume segmented
labor markets for different varieties, which is a known mechanism to generate quantitatively plau-
sible strategic complementarities in pricing. Formally, the household solves:

max
{Ct,Bt,(Ci,t,Li,t)i∈[0,1]}t≥0

Eft

[
∞∑
t=0

βt

(
C1−σ
t

1− σ
−
∫ 1

0
L1+ψ
i,t di

1 + ψ

)]
(F.1)

s.t.

∫ 1

0

Pi,tCi,tdi+Bt ≤ Rt−1Bt−1 +

∫ 1

0

Wi,tLi,tdi+ Πt

with CES aggregator, Ct =
[∫ 1

0
C

θ−1
θ

i,t di
] θ
θ−1

. Here all variables and notation are similarly defined
as in Equation (3.1), with the addition that Li,t now represents the household’s labor supply in
the segmented labor market i given wage Wi,t. Moreover, σ is the inverse of the intertemporal
elasticity of substitution, and ψ is the inverse of the Frisch elasticity of labor supply.

Monetary Policy. Monetary policy is specified as the following standard Taylor rule with interest
smoothing that targets inflation, output gap and output growth:

Rt

R̄
=

(
Rt−1

R̄

)ρ((
Pt
Pt−1

)φπ ( Yt
Y n
t

)φx ( Yt
Yt−1

)φ∆y

)1−ρ

exp(−σuut) (F.2)

where R̄ is the steady-state nominal rate, Yt ≡ Ct is the aggregate output, Y n
t is the natural-level

of output in the economy with no frictions, and ut ∼ N (0, 1) is the monetary policy shock.

Firms. There is a measure one of firms, indexed by i, that operate in monopolistically competi-
tive markets and are price takers in their segmented labor market. Firms take wages and demands
for their goods as given, and choose their prices Pi,t based on their information set, Sti , at that
time. After setting its prices, firm i hires labor Ldi,t to meet its demand with the production function
Yi,t = AtL

d
i,t. Here, At is an aggregate productivity shock. We assume at ≡ log(At), follows a

AR(1) process: at = ρaat−1 + σaεt, εt ∼ N (0, 1).
Firms are rationally inattentive and choose their prices subject to a cost that is linear in Shan-

non’s mutual information function. as in the RI problem in Equation (2.1). Firm i’s dynamic
rational inattention problem is given by:
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max
{Si,t⊆Si,t,Pi,t(Sti )}t≥0

E

[
∞∑
t=0

βtC−σt

{(
Pi,t − (1− θ−1)

Wi,t

At

)(
Pi,t
Pt

)−θ
Yt (F.3)

− ωI(Sti ; (Aτ ,Wi,τ )τ≤t|St−1
i )

}∣∣∣∣∣S−1
i

]
s.t. Sti = St−1

i ∪ Si,t,

where Yt is the aggregate output, Pt is the aggregate price index, Pi,t is the firm’s price, θ−1Wi,t is
the optimal subsidy for hiring labor that eliminates the steady-state distortions from monopolistic
pricing, and Si,t is the set of available signals for the firm that satisfies the assumptions specified
in Section 2.1.

Similar to our approach in the simple model, we derive a second-order approximation to the
net present value of firms’ profits (see Appendix E for detailed derivation) and define the firms’
rational inattention problem as

min
{pi,t}t≥0

∞∑
t=0

βtE
[
θ − 1

2
(pi,t − pt − αxt)2 + ωI(pi,t, {pt−j + αxt−j}∞j=0|pt−1

i )|p−1
i

]
Here, small letters denote log-deviations from the non-stochastic steady-state for their correspond-
ing variables and α ≡ σ+ψ

1+θψ
is the degree of strategic complementarity. Moreover, xt ≡ yt − ynt is

the log output gap defined as the log difference between output and its natural-level in the econ-
omy with no frictions. The log natural-level of output is uniquely determined by the productivity
shock and is given by ynt ≡

1+ψ
ψ+σ

at. Finally, in stating this problem, we have already incorporated
the result from Lemma 2.2, which states that with Shannon’s mutual information as the cost of
attention, the history of prices is sufficient statistics for the firm’s signals at any given time.

F.2 Definition of Equilibrium

Given exogenous processes for productivity and monetary policy shocks {at, ut}t≥0, a general
equilibrium of this economy is an allocation for the representative household, ΩH ≡ {Ct, Bt,

(Ci,t, Li,t)i∈[0,1]}
∞
t=0, an allocation for every firm i ∈ [0, 1] given their initial set of signals, ΩF

i ≡{
si,t ∈ Si,t, Pi,t, Ldi,t, Yi,t

}∞
t=0

, a set of prices
{
Pt, Rt, (Wi,t)i∈[0,1]

}∞
t=0

, and a stationary distribution
over firms’ states such that

1. given the set of prices and
{

ΩF
i

}
i∈[0,1]

, the household’s allocation solves the problem in
Equation (F.1),

2. given the set of prices and ΩH , and the implied labor supply and output demand, firms’
allocation solve their problem in Equation (F.3),
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3. monetary policy satisfies the specified rule in Equation (F.2) ;

4. markets clear: ∀i ∈ [0, 1],∀t ≥ 0, Yi,t = Ci,t, Li,t = Ldi,t and Yt = Ct.

F.3 Matrix Representation and Solution Algorithm

Firms wants to keep track of their ideal price, p∗i,t = pt + αxt. Notice that the state space repre-
sentation for p∗i,t is no longer exogenous and is determined in the equilibrium. However, we know
that this is a Guassian process and by Wold’s theorem we can decompose it to its MA(∞) rep-
resentation, p∗i,t = Φa(L)εa,t + Φu(L)εu,t, where Φa(.) and Φu(.) are lag polynomials. Here, we
have basically guessed that the process for p∗i,t is determined uniquely by the history of monetary
shocks which requires that rational inattention errors of firms are orthogonal.

We cannot put MA(∞) processes in the computer and have to truncate them. However, we
know that for stationary processes we can arbitrarily get close to the true process by truncating
MA(∞) processes. Our problem here is that p∗i,t has a unit root and is not stationary. To bypass
this issue, we re-write the state-space as: p∗i,t = Φa(L)εa,t + φu(L)ε̃u,t, ε̃u,t = (1 − L)−1εu,t =∑∞

j=0 εu,t−j , where ε̃u,t is the unit root of the process and basically we have differenced out the unit
root from the lag polynomial, and φu(L) = (1 − L)Φu(L). Notice that since the original process
was difference stationary, differencing out the unit root means that φu(L) is now in `2, and the
process can now be approximated arbitrarily precisely with truncation.

For ease of notation, let zt = (εa,t, εu,t) and z̃t = (εa,t, ε̃u,t). For a length of truncation L,
let ~x′t ≡ (zt, zt−1, . . . , zt−(L+1)) ∈ R2L and ~x′t ≡ (z̃t, z̃t−1, . . . , z̃t−(L+1)) ∈ R2L. Notice that
~xt = (I−ΛM′)~xt and ~xt = (I−ΛM′)−1~xt where I is a 2L× 2L identity matrix, Λ is a diagonal
matrix where Λ(2i,2i) = 1 and Λ(2i−1,2i−1) = 0 for all i = 1, 2, · · · , L, and M is a shift matrix:

M =

[
02×(2L−2) 02×2

I(2L−2)×(2L−2) 0(2L−2)×2

]

Then, note that p∗i,t ≈ H′~xt where H ∈ R2L is the truncated matrix analog of the lag polynom-
inal, and is endogenous to the problem. Our objective is to find the general equilibrium H along
with the optimal information structure that it implies.

Moreover, note that at = H′a~xt and ut = H′u~xt whereH′a = (1, 0, ρa, 0, ρ
2
a, 0, . . . , ρ

L−1
a , 0) and

H′u = (0, 1, 0, ρu, 0, ρ
2
a, . . . , 0, ρ

L−1
u ).

We will solve for H by iterating over the problem. In particular, in iteration n ≥ 1, given the
guess H(n−1), we have the following state space representation for the firm’s problem
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~xt =



0 0 · · · 0 0 0

0 1 · · · 0 0 0

1 0 · · · 0 0 0

0 1 · · · 0 0 0
...

... . . . ...
...

...
0 0 · · · 1 0 0


︸ ︷︷ ︸

A

~xt−1 +



1 0

0 1

0 0
...

...
0 0


︸ ︷︷ ︸

Q

zt, p∗i,t = H′(n−1)~xt

Now, note that

pt =

∫ 1

0

pi,tdi = H′(n−1)

∫ 1

0

Ei,t[~xt]di ≈ H′(n−1)

[
∞∑
j=0

[(I−K(n)Y
′
(n))A]jK(n)Y

′
(n)M

′j

]
~xt

= H′(n−1)X(n)~xt = H′p~xt

Let xt = H′x~xt, it = H′i~xt, and πt = H′π~xt = H′p(I−ΛM′)−1(I−M′)~xt. Then the households
Euler equation, xt = Eft

[
xt+1 − 1

σ
(it − πt+1)

]
+ Eft [ynt+1]− ynt , gives:

Hi = σ (M′ − I) Hx +
σ(1 + ψ)

σ + ψ
(M′ − I) Ha + M′Hπ

The Taylor rule, it = ρit−1 + (1− ρ) (φππt + φxxt + φ∆y (yt − yt−1)) + ut, gives:

(I− ρM) Hi = (1− ρ)

(
φπHπ + φxHx + φ∆y (I−M)

(
Hx +

1 + ψ

σ + ψ
Ha

))
+ Hu

These give us Hx and Hi and we update new H(n) using H(n) = Hp + α(I −MΛ′)Hx. We
iterate until convergence of H(n).

F.4 Impulse Response Functions

For both the pre-Volcker and post-Volcker parameterization of monetary policy in Table 2, Figure
G.1 shows the impulse responses of the model variables to one standard deviation TFP and mone-
tary policy shocks. The main takeaway from these IRFs is that inflation, output, and both nominal
and real interest rates respond more to shocks under the pre-Volcker parameterization of monetary
policy.
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Figure G.1: Impulse Responses to Technology and Monetary Shocks

Notes: This figure plots impulse responses of inflation, output, nominal rates, and real interest rates to a one
standard deviation shock to technology (upper panels) and those to a one standard deviation shock to monetary
policy (lower panels). Solid black lines are the responses in the model with the post-Volcker calibration while
dashed gray lines are the responses in the model with the pre-Volcker calibration.

Table G.1: Estimates of the Taylor Rule

constant ρ φπ φ∆y φx

Pre-Volcker 0.096 0.957 1.589 1.028 1.167
(1969–1978) (0.187) (0.022) (0.847) (0.601) (0.544)
Post-Volcker -0.310 0.961 2.028 3.122 0.673
(1983–2007) (0.062) (0.015) (0.617) (1.090) (0.234)

Notes: This table reports least squares estimates of the Taylor rule. We use the Greenbook forecasts of current and
future macroeconomic variables. The interest rate is the target federal funds rate set at each meeting from the Fed.
The measure of the output gap is based on Greenbook forecasts. We consider two time samples: 1969–1978 and
1983–2007. Newey-West standard errors are reported in parentheses.
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Table G.2: Estimates of the New Keynesian Phillip Curve

(1) Output gap (2) Output (3) Adj. output gap

Pre-
Volcker

Post-
Volcker

Pre-
Volcker

Post-
Volcker

Pre-
Volcker

Post-
Volcker

Panel A. Standard New Keynesian Phillips Curve

Slope of NKPC (κ) 2.751 0.846 -0.347 -0.231 -0.278 -0.057
(0.101) (0.020) (0.020) (0.007) (0.034) (0.013)

Forward-looking (γ) 0.901 0.894 2.459 1.649 2.399 1.592
(0.055) (0.016) (0.043) (0.013) (0.041) (0.011)

Panel B. Hybrid New Keynesian Phillips Curve

Slope of NKPC (κ) 1.020 0.249 -0.128 -0.07 -0.057 -0.021
(0.063) (0.012) (0.013) (0.004) (0.016) (0.005)

Forward-looking (γf ) 0.738 0.649 1.420 0.931 1.299 0.848
(0.027) (0.006) (0.049) (0.016) (0.038) (0.010)

Backward-looking (γb) 0.335 0.393 0.304 0.356 0.332 0.392
(0.005) (0.003) (0.011) (0.007) (0.009) (0.004)

Panel C. Hybrid New Keynesian Phillips Curve (γf + γb = 1)

Slope of NKPC (κ) 1.160 0.304 0.035 0.027 0.024 -0.012
(0.029) (0.007) (0.001) (0.001) (0.007) (0.003)

Forward-looking (γf ) 0.666 0.612 0.549 0.499 0.554 0.512
(0.005) (0.003) (0.002) (0.001) (0.002) (0.001)

Notes: This table shows the estimates of the NKPC using simulated data from the baseline model presented in
Section 4.2. Column (1) and (2) show the estimates of the NKPC using the simulated output gap and output
data, respectively. Column (3) shows the estimates using the simulated output gap data, which are adjusted by
subtracting moving averages of natural level of output from actual output. Panel A shows the estimates of the
standard New Keynesian Phillips curve without backward-looking inflation and Panel B shows the estimates of the
hybrid New Keynesian Phillips curve. Panel C shows the estimates of the hybrid New Keynesian Phillips curve
with a coefficient restriction, γf + γb = 1. Four lags of inflation and output gap (or output) are used as instruments
for the GMM estimation. A constant term is included in the regressions but not reported. Newey-West standard
errors are reported in parentheses.
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