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A Section 2

A.1 Descriptive statistics
The year-by-year Census Bureau’s Survey of Construction (SOC) coverage of our data set
is provided in Table A.1. We find that our SOC coverage remained relatively stable over
time. Excluding 2003, the lowest and highest coverage for total housing is 39 percent and 55
percent, respectively.

A.2 Overview of the land development process
Land development is generally defined as the conversion of land from one use to another.
The land development design process is lengthy and is broadly categorized into three stages:
the pre-design stage, the design stage, and the post-design stage. Our data set records sites
from the design stage when the preliminary site plan is submitted to and approved by the
municipality. In this part, we sketch the whole land development process. The description
borrows from the handbook of Dewberry (2019) where further details could be found.

Pre-design stage. At the beginning of this stage, the developer identifies a site or multiple
potential sites of interest, labeled as the site selection process. Then comes the due diligence
process where the site engineer performs a technical desk review of the site focusing on the
regulatory aspects. Afterwards, the site engineer performs site analysis to understand the
physical conditions of the site including a study on the engineering feasibility. At this phase,
a particular emphasis is on the identification of environmental, cultural, and infrastructure
resources.

Design stage. This stage includes both a preliminary design phase and a detailed design
phase. Based on the constraints and development opportunities identified at the pre-design
stage, a preliminary design is drawn to deliver the intent of the project. These preliminary
design plans are submitted for an entitlement review by some municipalities. Approvals at
this stage are not necessarily a guarantee of the final site plan approval, but they provide
a guideline of what is to be expected during subsequent reviews. The detailed design phase
builds from the approved preliminary design plan to focus on the engineering details necessary
for permitting and construction. The site engineer eventually comes up with a final site plan
which is submitted for a regulatory review and permit processing.

Post-design stage. After the approval of the final site plan, land development enters the post-
design stage. This stage includes permits and construction. While the approval of the final site
plan is typically treated as a milestone of land development, major construction activity can
initiate only after permits are issued. The approval of a final site plan is a key input for
permit issuance, but depending on the type and scope of the project, project bonds and other
legal agreements might also be needed. Depending on the jurisdiction, a series of permits
might be needed for infrastructure work such as a site permit which is often required prior
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to commencing any land disturbance. For the construction of structures, a building permit
is typically required. Environmental permits might also be required based on site locations,
natural resources present, type of construction etc. After the necessary permits are acquired
and a construction contract agreement is signed, construction begins. At this stage, the general
contractor coordinates with the design team to ensure compliance with the approved design
documents.

A.3 TTD regression
The local controls we use in Table 3 of the main draft are listed below. Some of these are taken
from Davidoff (2016).

1. Bartik: Computes the 1980 Census share of people working in each industry for each
county and multiplies that with the national industry employment growth (net of the
location of interest) between 1980 and the 2010-2012 American Community Survey.

2. Sand state: Dummy variable for counties in Arizona, California, Florida, and Nevada.

3. Coastal state: Dummy variable for counties adjacent to the Pacific Ocean and stops on
the Acela line between Washington, D.C. and New York.

4. Immigrant: The share of adult population in 1980 that were born outside the U.S.

5. College+: The share of adult population in 1980 that had college education or more.

6. Population density: Taken from the 1980 Census.

7. County GDP: Annual county-level real GDP.

The regression coefficients of the local controls in regression (2) of Table [3] in the main text
are shown in Table A.2. The regression coefficients of the local controls interacted with year
fixed effects in regression (3) are omitted due to space.

A.4 Alternative TTD definitions
We first present the sensitivity of our results in Section 2 based on alternative definitions for
the end date of TTD. Then, we discuss our choice of the start date of TTD.

Alternative end date of TTD. For the end date of TTD, we assume that section development
is completed when 25 percent of the total units are built. Using this alternative definition,
Tables 2-5 in the main text are reproduced. Table A.3 presents the section TTD statistics
shown in Table 2 of the main text. As expected, the mean of total TTD decreases from 1,329
days to 1,141 days. The standard deviation as well as the IQR also decreases from 1,077 days
to 1,009 days and from 1,006 days to 911 days, respectively. The relatively smaller decrease in
the standard deviation and the IQR relative to the mean suggests that the heterogeneity in TTD
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remains robust to this definition. Note that as the end of TTD is defined as only 25 percent of
completion, there are additional completed sections included in our sample.

Using this definition, Table A.4 presents the regression results in Table 3 of the main text.
The regression results are quite similar.

The county-level TTD statistics using the alternative TTD definition (Table 4 in the main
text) is presented in Table A.5. Despite the lower mean county-level TTD, the standard de-
viation and IQR remains relatively intact, suggesting that the cross-regional variation is less
sensitive to the end date definition of TTD.

Table A.6 shows the county-level TTD regression results shown in Table 5 in the main text.
We observe the same pattern where the Saiz elasticity and the rainfall intensity all significantly
matter for county-level TTD.

Beginning date of TTD. For the beginning date of TTD, our baseline definition is the first
quarter when we observe the total number of future lots to be the same as the total number of
planned lots in the subdivision/section. With the help of maps submitted to the municipality,
this is typically detected both by on-site drives each quarter and by acquiring satellite images
from another company.

For some completed sections, our data set also includes the preliminary approval date
from the municipality (typically from the planning department) as the first step in the official
process of land development. Therefore, the data set with 222,868 completed sections could
be classified into 4 cases:

• Case 1: Baseline missing and prelim. date missing (77,787 sections or 34.9%).

• Case 2: Baseline missing and prelim. date available (23,287 sections or 10.5%).

• Case 3: Baseline available and prelim. date missing (74,981 sections or 33.6%).

• Case 4: Baseline available and prelim. date available (46,813 sections or 21.0%).

Accordingly, we use the completed sections in cases 3 and 4 in the main text, which consists
of 54.6% of the completed sections between 2003 and 2019 in the data set.

First, we show that when the start dates from our baseline definition and the official pre-
liminary approval date are both available (case 4), our TTD definition is also consistent with
an alternative definition that takes the official preliminary approval date as the start of TTD.
In panel A of figure A.1, we plot the distribution of the two TTD definitions for the 46,813
completed sections in case 4. The density mostly overlaps each other. In this case, using an
alternative definition does not quantitatively matter for our results.

Second, we decide to drop case 2 from our analysis even though the preliminary approval
date is available. In case 2, we do not directly observe the beginning date of raw land devel-
opment. We typically only observe development from an active stage, i.e., after the raw land
development is completed. Moreover, we tend to observe the preliminary approval date to be
much earlier than when the section is first recorded in the data set. In panel B of figure A.1,
we plot the distribution of TTD in case 2 using the preliminary approval date as the beginning
of TTD, and compare that with the same TTD distribution using sections in case 4. We find
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that TTD using the preliminary approval date tends to be much longer in case 2. This suggests
that development in case 2 are likely to have gone through other stages not assumed in our
model, such as a clearer gap between the plannings of raw land development and structures
development that leads to a lengthy pause. As our goal is to understand the supply-side deter-
minants of TTD under a comprehensive development planning at the beginning, the lengthy
TTD as well as the obscure starting date of raw land development in case 2 is problematic and
we decided to drop this data.

B Section 3

B.1 Derivation of Lemma 1
Recap the following six optimality conditions:

It =

(
P∑
p=0

U
θ−1
θ

t−p|t

) θ
θ−1

,

Ut|t+p = M1−α
t+p−P |t+pN

α
t|t+p, for p = 0, 1, · · · , P,

Nt =
P∑
p=0

Nt|t+p,

Mt|t+P = M̄qγt ,

µt|t+p = Et

[
βp
(
λt+p
λt

)
qt+p

(
It+p
Ut|t+p

) 1
θ

]
for p = 0, 1, · · · , P,

wt = αµt|t+pM
1−α
t+p−P |t+pN

α−1
t|t+p for p = 0, 1, · · · , P,

where Λt|t+p = βpλt+p/λt. Denoting the steady state variables of each variable with the
subscript ss, the following holds at the steady state:

Iss =

(
P∑
p=0

U
θ−1
θ

0|p,ss

) θ
θ−1

,

U0|p,ss = M1−α
ss Nα

0|p,ss, for p = 0, 1, · · · , P,

Nss =
P∑
p=0

N0|p,ss,

Mss = M̄qγss,

µ0|p,ss = βpqss

(
Iss

U0|p,ss

) 1
θ

for p = 0, 1, · · · , P,

wss = αµ0|p,ssM
1−α
ss Nα−1

0|p,ss for p = 0, 1, · · · , P.
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This implies the following conditions for p = 1, · · · , P :

U0|p,ss

U0|p−1,ss

=

(
N0|p,ss

N0|p−1,ss

)α
,

µ0|p,ss

µ0|p−1,ss

= β

(
U0|p−1,ss

U0|p,ss

) 1
θ

,

µ0|p,ss

µ0|p−1,ss

=

(
N0|p,ss

N0|p−1,ss

)1−α

.

Using these, we derive the following equations:

N0|p,ss = N0|p−1,ssβ̃,

U0|p,ss = U0|p−1,ssβ̃
α,

µ0|p,ss = µ0|p−1,ssβ̃
1−α,

where β̃ = β
θ

θ+α(1−θ) .
Based on the computed steady state values, it is straightforward to derive the five log-

linearized conditions in Lemma 1. For instance, the second equation is Lemma 1 can be
derived by using µt|t+p to plug the fifth optimality condition to the sixth optimality condition
and then plugging in the second optimality condition using Nt|t+p.

B.2 Proof of Proposition 2
As the economy was in its steady state equilibrium before period 0, the hatted values are
zero for those periods. Given a shock in period 0, the variables respond in period 0 and
afterwards consistent with expectations formed in period 0. Without loss of generality, assume
that P > 2. To derive the period-0 housing supply curve, some equations in Lemma 1 could
be written as follows:

Î0 =
1

B(P )
Û0|0,(

1− α
α

+
1

θ

)
Û0|0 =

1

θ
Î0 + q̂0 − ŵ0 + E0(λ̂1 − λ̂0).

Netting out Û0|0 from the two equations, we get the period-0 housing supply curve:

Î0 =
1(

1−α
α

+ 1
θ

)
B(P )− 1

θ

q̂0 −
1(

1−α
α

+ 1
θ

)
B(P )− 1

θ

ŵ0,

which can be expressed as

Î0 = Υ0(P )q̂0 −
Υ0(P )

B(0)
ŵ0.
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Similarly, the equations in Lemma 1 that are relevant to derive the period-1 housing supply
curve are as follows:

Î1 =
1

B(P )

(
Û1|1 + β̃α(θ−1)/θÛ0|1

)
,(

1− α
α

+
1

θ

)
Û1|1 =

1

θ
Î1 + q̂1 − ŵ1,(

1− α
α

+
1

θ

)
Û0|1 =

1

θ
Î1 + q̂1 − ŵ0 +

(
λ̂1 − λ̂0

)
.

Plugging Û1|1 and Û0|1 from the last two equations to the first equation, we get the period-1
housing supply curve:

Î1 =
1 + β̃α(θ−1)/θ(

1−α
α

+ 1
θ

)
B(P )− 1

θ

(
1 + β̃α(θ−1)/θ

) q̂1

− 1(
1−α
α

+ 1
θ

)
B(P )− 1

θ

(
1 + β̃α(θ−1)/θ

) (ŵ1 + β̃α(θ−1)/θŵ0 + β̃α(θ−1)/θ(λ̂0 − λ̂1)
)
,

which can be expressed as

Î1 = Υ1(P )q̂1 −
Υ1(P )

B(1)

1∑
j=0

(
β̃α(θ−1)/θ

)j (
ŵ1−j + λ̂1−j − λ̂1

)
.

Similarly, the equations in Lemma 1 that are relevant to derive the period-2 housing supply
elasticity are as follows:

Î2 =
1

B(P )

(
Û2|2 + β̃α(θ−1)/θÛ1|2 +

(
β̃α(θ−1)/θ

)2

Û0|2

)
,(

1− α
α

+
1

θ

)
Û2|2 =

1

θ
Î2 + q̂2 − ŵ2,(

1− α
α

+
1

θ

)
Û1|2 =

1

θ
Î2 + q̂2 − ŵ1 +

(
λ̂2 − λ̂1

)
,(

1− α
α

+
1

θ

)
Û0|2 =

1

θ
Î2 + q̂2 − ŵ0 +

(
λ̂2 − λ̂0

)
.

Plugging Û2|2, Û1|2 and Û0|2 from the last three equations to the first equation, we get the
period-2 housing supply curve:

Î2 = Υ2(P )q̂2 −
Υ2(P )

B(2)

2∑
j=0

(
β̃α(θ−1)/θ

)j (
ŵ2−j + λ̂2−j − λ̂2

)
.
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In general for t < P , the equations in Lemma 1 that are relevant to derive the period-2
housing supply elasticity are as follows:

Ît =
1

B(P )

(
t∑

j=0

(
β̃α(θ−1)/θ

)j
Ût−j|t

)
,(

1− α
α

+
1

θ

)
Ût|t =

1

θ
Ît + q̂t − ŵt,(

1− α
α

+
1

θ

)
Ût−1|t =

1

θ
Ît + q̂t − ŵt−1 +

(
λ̂t − λ̂t−1

)
,(

1− α
α

+
1

θ

)
Ût−2|t =

1

θ
Ît + q̂t − ŵt−2 +

(
λ̂t − λ̂t−2

)
,

...(
1− α
α

+
1

θ

)
Û0|t =

1

θ
Ît + q̂t − ŵ0 +

(
λ̂t − λ̂0

)
.

Plugging {Ut−j|t}tj=0 from the last t + 1 equations to the first equation, we can derive the
period-t housing supply curve as in the proposition.

For t ≥ P , note that M̂t−P |t = γq̂t−P . The relevant equations in this case are

Ît =
1

B(P )

P∑
p=0

(
β̃α(θ−1)/θ

)p
Ût−p|t,(

1− α
α

+
1

θ

)
Ût|t =

1

θ
Ît + q̂t +

(
1− α
α

)
γq̂t−P − ŵt,(

1− α
α

+
1

θ

)
Ût−1|t =

1

θ
Ît + q̂t +

(
1− α
α

)
γq̂t−P − ŵt−1 +

(
λ̂t − λ̂t−1

)
,

...(
1− α
α

+
1

θ

)
Ût−P+1|t =

1

θ
Ît + q̂t +

(
1− α
α

)
γq̂t−P − ŵt−P+1 +

(
λ̂t − λ̂t−P+1

)
,(

1− α
α

+
1

θ

)
Ût−P |t =

1

θ
Ît + q̂t +

(
1− α
α

)
γq̂t−P − ŵt−P +

(
λ̂t − λ̂t−P

)
.

Substituting out {Ut−j|t}t−Pj=0 in the first equation and rearranging, we get[
B(P )−

( 1
θ

1−α
α

+ 1
θ

)(
β̃(α(θ−1)/θ)(1+P ) − 1

β̃α(θ−1)/θ − 1

)]
Ît =

(
1

1−α
α

+ 1
θ

)(
β̃(α(θ−1)/θ)(1+P ) − 1

β̃α(θ−1)/θ − 1

)
q̂t +

(
1− α
α

)(
β̃(α(θ−1)/θ)(1+P ) − 1

β̃α(θ−1)/θ − 1

)
γq̂t−P + etc.

Since

B(P ) =
β̃(α(θ−1)/θ)(1+P ) − 1

β̃α(θ−1)/θ − 1
,
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the proposition holds for t ≥ P .

B.3 Proof of Corollary 3
Since β < 1, θ > 0, and α ∈ (0, 1),

β̃ = β
θ

θ+α(1−θ) < 1.

To verify that Υt(P ) (t ∈ [0, P ]) is positive and an increasing function of t, it suffices to show
that B(t) is positive and an increasing function of t. First, we show that B(t) is positive. Note
that when θ > 1, β̃α(θ−1)/θ < 1. Therefore,

B(t) =
1− β̃(α(θ−1)/θ)(1+t)

1− β̃α(θ−1)/θ
> 0.

Likewise, when θ < 1, β̃α(θ−1)/θ > 1. which implies

B(t) =
β̃(α(θ−1)/θ)(1+t) − 1

β̃α(θ−1)/θ − 1
> 0.

Second, we show that B(t) is an increasing function of t by taking its derivative with
respect to t:

dB(t)

dt
=
α
(
θ−1
θ

)
(ln β̃)

β̃α(θ−1)/θ − 1
β̃(α(θ−1)/θ)(1+t) > 0.

The above inequality holds as ln β̃ < 0.
The second part of the corollary follows from the fact that B(P ) < B(P̃ ) for P < P̃ , as

Υt(P ) is a decreasing function of B(P ) (and P ).

C Section 4

C.1 Sensitivity analysis
We set the elasticity of substitution across construction stage (θ) as 0.5 as our baseline. Ap-
pendix Figures A.2 and A.3 show the regional variations in our T−quarter housing supply
elasticities when we set θ = 0.01 and θ = 2.0, respectively. As shown in these figures, the re-
gional variation of our supply elasticity measures is less sensitive to the degree of substitution
between different construction stages.
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D Section 5

D.1 Details of the local general equilibrium model
The local general equilibrium model described in Section 5 closes the partial equilibrium
model of housing developers and the local government in Section 3 by incorporating local
households and the nondurable goods sector. Since the local economy is in a monetary union,
we assume that the interest rate is exogenous. As such, the bond and nondurable goods markets
do not clear, analogous to small open economy models in the international macro literature. In
the next part, the local general equilibrium model is extended to a two-region New Keynesian
economy with nominal rigidities for nondurable goods, national interest rates set by a standard
Taylor rule by the central bank, and the bond and nondurable good markets clearing at the
national level.

D.1.1 Optimality conditions

We solve the model in Section 5 with a fixed interest rate (Rt = R̄ = 1/β). The optimality
conditions of the local general equilibrium model could be summarized as below.

1. Endogenous variables (3(P+1)+11):

(a) TTD (3(P+1)): Ut|t+p, Nt|t+p, µt|t+p for p = 0, 1, · · · , P
(b) Quantity (8): Mt|t+P , Nt, It, Yt, Nn,t, Ht, Ct, Bt+1

(c) Price (3): wt, wn,t, qt

2. Exogenous variable (1): ϕt

3. Predetermined values: B0, H−1.

Equations for the endogenous variables:

Ut|t+p = Nα
t|t+pM

1−α
t+p−P |t+p for p = 0, 1, · · · , P, (D.1)

µt|t+p = Et

[
βpqt+p

(
It+p
Ut|t+p

) 1
θ

]
for p = 0, 1, · · · , P, (D.2)

wt = αµt|t+pM
1−α
t+p−P |t+pN

α−1
t|t+p for p = 0, 1, · · · , P, (D.3)

It =

(
P∑
p=0

U
θ−1
θ

t−p|t

) θ
θ−1

, (D.4)

Nt =
P∑
p=0

Nt|t+p, (D.5)

Yt = Z̄Nn,t, (D.6)
wn,t = Z̄, (D.7)
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Ht = (1− δ)Ht−1 + It, (D.8)

1 +
ψb
β
Bt+1 = Et

[
uc(t+ 1)

uc(t)

]
, (D.9)

−unn(t) = uc(t)wn,t, (D.10)
−un(t) = uc(t)wt, (D.11)

uh(t) = uc(t)qt − β(1− δ)Etuc(t+ 1)qt+1, (D.12)
Mt|t+P = qγt , (D.13)

Ct + βBt+1 = wn,tNn,t +Bt. (D.14)

Functional forms. For household utility, we follow Guren, McKay, Nakamura and Steins-
son (2020) in assuming that nondurable consumption and leisure are substitutable in household
utility in the style of Greenwood, Hercowitz and Huffman (1988). The housing demand shock
ϕt is modeled in a Stone-Geary fashion:

u(Ct, Ht, Nn,t, Nt;ϕt) =

[
1

1− σ

(
Ct −

ψn
1 + ν

N1+ν
n,t −

ψ

1 + ν
N1+ν
t

)κ
(Ht − ϕt)1−κ

]1−σ

.

By defining variables C̃t and H̃t as

C̃t ≡ Ct −
ψn

1 + ν
N1+ν
n,t −

ψ

1 + ν
N1+ν
t ,

H̃t ≡ Ht − ϕt,

we can express the marginal utilities as follows:

uc(t) = κ
(
C̃κ
t H̃

1−κ
t

)1−σ 1

C̃t
,

unn(t) = −κψn
(
C̃κ
t H̃

1−κ
t

)1−σ N ν
n,t

C̃t
,

un(t) = −κψ
(
C̃κ
t H̃

1−κ
t

)1−σ N ν
t

C̃t
,

uh(t) = (1− κ)
(
C̃κ
t H̃

1−κ
t

)1−σ 1

H̃t

.

These marginal utilities imply that the labor supply conditions of households depend solely
on the real wage:

−unn(t) = uc(t)wn,t ⇒ ψnN
ν
n,t = wn,t,

−un(t) = uc(t)wt ⇒ ψNν
t = wt.

Using the above functional forms, we can rewrite the equilibrium conditions for the en-
dogenous variables {Ut|t+p, Nt|t+p, µt|t+p}Pp=0,Mt|t+P , Nt, It, Nn,t, Ht, Ct, Bt+1, wt, qt as fol-
lows:

Ut|t+p = Nα
t|t+pM

1−α
t+p−P |t+p for p = 0, 1, · · · , P, (D.15)
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µt|t+p = Et

[
βpqt+p

(
It+p
Ut|t+p

) 1
θ

]
for p = 0, 1, · · · , P, (D.16)

wt = αµt|t+pM
1−α
t+p−P |t+pN

α−1
t|t+p for p = 0, 1, · · · , P, (D.17)

It =

(
P∑
p=0

U
θ−1
θ

t−p|t

) θ
θ−1

, (D.18)

Nt =
P∑
p=0

Nt|t+p, (D.19)

Ht = (1− δ)Ht−1 + It, (D.20)

1 +
ψb
β
Bt+1 = Et

[
uc(t+ 1)

uc(t)

]
, (D.21)

ψnN
ν
n,t = Z̄, (D.22)

ψNν
t = wt, (D.23)

uh(t) = uc(t)qt − β(1− δ)Etuc(t+ 1)qt+1, (D.24)
Mt|t+P = qγt , (D.25)

Ct + βBt+1 = Z̄Nn,t +Bt. (D.26)

D.1.2 Steady state

The relevant steady states (with zero net bond holdings) are expressed as follows:

U0|p = Nα
0|pM

1−α
0|P for p = 0, 1, · · · , P,

µ0|p = βpq0

(
I0

U0|p

) 1
θ

for p = 0, 1, · · · , P,

w0 = αµ0|pM
1−α
0|P Nα−1

0|p for p = 0, 1, · · · , P,

I0 =

(
P∑
p=0

U
θ−1
θ

0|p

) θ
θ−1

,

N0 =
P∑
p=0

N0|p,

δH0 = I0,

ψn =
Z̄

N ν
n,0

,

ψ =
w0

N ν
0

,(
1− κ
κ

)
C̃0

H̃0

= (1− β(1− δ))q0,
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M0|P = qγ0 ,

C0 = Z̄Nn,0.

As such, the steady state ratios of TTD variables for each p = 1, · · · , P are as follows:

U0|p

U0|p−1

=

(
N0|p

N0|p−1

)α
,

µ0|p

µ0|p−1

= β

(
U0|p−1

U0|p

) 1
θ

,

µ0|p

µ0|p−1

=

(
N0|p

N0|p−1

)1−α

.

This implies the TTD ratios as follows:

N0|p

N0|p−1

= β
θ

α+θ(1−α) ≡ β̄n,

U0|p

U0|p−1

= β
θα

α+θ(1−α) ≡ β̄u,

µ0|p

µ0|p−1

= β
θ(1−α)

α+θ(1−α) ≡ β̄µ.

Using these ratios, we can reduce the steady state expressions as follows:

U0|0 = Nα
0|0M

1−α
0|P ,

µ0|0 = q0

(
I0

U0|0

) 1
θ

,

w0 = αµ0|0M
1−α
0|P Nα−1

0|0 ,

I0 = U0|0

[
P∑
p=0

(
β̄
θ−1
θ

u

)p] θ
θ−1

= U0|0

1−
(
β̄
θ−1
θ

u

)P+1

1− β̄
θ−1
θ

u


θ
θ−1

,

N0 = N0|0

(
P∑
p=0

β̄pn

)
= N0|0

[
1− β̄P+1

n

1− β̄n

]
,

δH0 = I0,

ψn =
Z̄

N ν
n,0

,

ψ =
w0

N ν
0

,(
1− κ
κ

)
C̃0

H̃0

= (1− β(1− δ))q0,
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M0|P = qγ0 ,

C0 = Z̄Nn,0.

We calibrate the utility parameters ψn, ψ, and κ to target the given steady state values of
Nn, N , and C/H . The following steady state values are similarly derived as above: B0 = 0 ,

ψn = Z̄
Nν
n,0

, C0 = Z̄Nn,0 , H0 = C0/(C0/H0) , I0 = δH0 , U0|0 = I0

[∑P
p=0

(
β̄
θ−1
θ

u

)p]− θ
θ−1

,

N0|0 = N0

(∑P
p=0 β̄

p
n

)−1

, M0|P =
(
U0|0
Nα

0|0

) 1
1−α

, q0 = M
1
γ

0|P , µ0|0 = q0

(
I0
U0|0

) 1
θ

, and

w0 = αµ0|0M
1−α
0|P Nα−1

0|0 . In turn, we obtain ψ = w0

Nν
0

. Plugging these into the following

variables

C̃0 = C0 −
ψn

1 + ν
N1+ν
n,0 −

ψ

1 + ν
N1+ν

0 , H̃0 = H0 − ϕ0,

we obtain κ by the equation 1−κ
κ

= (1− β(1− δ))q0
H̃0

C̃0
. Finally, the remaining TTD vari-

ables for each p = 1, · · · , P are computed as N0|p = N0|p−1β̄n , U0|p = U0|p−1β̄u , µ0|p = µ0|p−1β̄µ .

D.1.3 Log-linearized conditions

Define B∗t+1 ≡ eBt+1 . Log-linearizing the variables at their respective steady state values, we
get the following 3(P + 1) + 11 equations:

ût|t+p = αn̂t|t+p + (1− α)m̂t+p−P |t+p for p = 0, 1, · · · , P,

µ̂t|t+p = Etq̂t+p +
1

θ
Etît+p −

1

θ
ût|t+p for p = 0, 1, · · · , P,

ŵt = µ̂t|t+p + (1− α)m̂t+p−P |t+p + (α− 1)n̂t|t+p for p = 0, 1, · · · , P,1−
(
β̄
θ−1
θ

u

)P+1

1− β̄
θ−1
θ

u

 ît =
P∑
p=0

(
β̄
θ−1
θ

u

)p
ût−p|t,

(
1− β̄P+1

n

1− β̄n

)
n̂t =

P∑
p=0

(
β̄n
)p
n̂t|t+p,

ĥt = (1− δ)ĥt−1 + δît,

ψb
β
b̂∗t+1 = [κ(1− σ)− 1](Etˆ̃ct+1 − ˆ̃ct) + (1− κ)(1− σ)(Etˆ̃ht+1 − ˆ̃ht),

n̂n,t = 0,

νn̂t = ŵt,

[1− (κ− κσ)β(1− δ)]ˆ̃ct − [1− (κ− κσ)]β(1− δ)Etˆ̃ct+1 =
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[1− (κ+ σ − κσ)β(1− δ)]ˆ̃ht − (1− (κ+ σ − κσ))β(1− δ)Etˆ̃ht+1 + q̂t − β(1− δ)Etq̂t+1,

m̂t|t+P = γq̂t,

C̄ĉt + βb̂∗t+1 = Z̄N̄nn̂n,t + b̂∗t ,

¯̃C ˆ̃ct = C̄ĉt − ψnN̄1+ν
n n̂n,t − ψN̄1+νn̂t,

¯̃H ˆ̃ht = H̄ĥt − ϕ̄ϕ̂t.

The 3(P + 1) + 11 endogenous variables are {ût|t+p, n̂t|t+p, µ̂t|t+p}Pp=0, m̂t|t+P , q̂t, ît, ŵt, n̂t,

ĥt, b̂∗t+1, ˆ̃ct,
ˆ̃ht, n̂n,t, ĉt.

D.1.4 Calibration

Table A.7 presents our calibration for the local GE model. The model is calibrated at a quar-
terly frequency with a time discount factor of β = 0.98

1
4 . We set the inverse of the Frisch

elasticity (ν) to be 1.0 and the inverse of the elasticity of intertemporal substitution (σ) to be
2.0, following Guren et al. (2020). The elasticity of substitution across construction stages (θ)
is set at 0.5 as our baseline.

The construction labor share (α) is set at 0.385 which implies that a county with the small-
est Saiz’s supply elasticity has a permit elasticity at its lower bound of zero. This value of
is consistent with our estimate of the construction labor income of 37 percent in the KLEMS
account when we assume that overhead labor costs are about 10 percent of the total labor cost.
We set the preference weight on effective consumption (κ) as 0.75 to target a 25% expendi-
ture share on housing, which is the average housing expenditure in the Consumer Expenditure
Survey (CEX).

We set the depreciation rate on housing (δ) to 3% annually and the scale of the portfolio
holding cost (ψb) to 0.001 as in Guren et al. (2020). The housing demand shock (ϕt) follows
an AR(1) with quarterly persistence of 0.95.

D.2 Empirical regularities of the housing market
Cross-county price-quantity correlation. The cross-county rank correlation coefficients
between one-year house price growth and one-year housing unit growth from 2001 through
2019 are shown in Figure A.4. The average cross-county rank correlation is 0.13, and the
correlation is positive in the sample except 2008-11. Excluding the Great Recession period
(2007-09), the average correlation is 0.17.

Regression of house price dynamics with short- and long-run elasticities. Section 5.3 in
the main text presents the following regression:

∆τ2
τ1

log (Pi,t/PN,t) = κE i∞ + ηE i5 + ΩXi + ui,

where E i∞ and E i5 are county i’s respective long-run and short-run (5-year) housing supply
elasticities. To verify the intuition provided in the main text, we simulate our model with a
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common housing demand shock (with persistence ρϕ = 0.95) for each county and run the
above regression. The results are plotted in Figure A.5. For a relatively persistent shock,
both the long-run elasticity and our short-run elasticity correctly predicts a negative sign in
the short horizons. Also consistent with our intuition is that only the regression coefficient of
the long-run elasticity is significantly negative in the longer horizons.

In Figure A.6, we run the regression without the long-run elasticity. In this case, the
coefficients are negative throughout the horizon as our four-year elasticity is a weighted sum
of the short-run elasticity driven by TTD and the long-run elasticity.

D.3 Extension: Two-region general equilibrium model
In this part, we develop a two-region general equilibrium model to study the general equilib-
rium forces that govern new construction and house price responses when house price elastic-
ities are different across regions. The model consists of two regions with local governments
that belong to a monetary union. We refer to the regions as “home” and “foreign”. The pop-
ulation of the entire economy is normalized to one and the population of the home region is
denoted by n.

D.3.1 Household

Utility. Home households maximize their expected lifetime utility,

E0

∞∑
t=0

βtU (Ct, Ht, Nt, Nc,t;ϕt) , (D.27)

where Ct is the household consumption of a composite consumption good, Ht is the service
flow of housing, Nt is the labor supply for the (non-construction) output sector, Nc,t is the
labor supply for the construction sector, and ϕt is an exogenous process for housing demand.
The parameter β is the household subjective discount factor. Foreign households maximize
the same utility and we use the asterisk (*) to denote foreign variables.

Consumption good. The composite consumption good of the home region, Ct, is a constant
elasticity of substitution (CES) aggregator of final goods produced in both home and foreign
regions:

Ct =
[
φ

1
η (CH,t)

η−1
η + (1− φ)

1
η (CF,t)

η−1
η

] η
η−1

,

where CH,t is home consumption of goods produced in the home region and CF,t is home
consumption of goods produced in the foreign region. The parameter φ captures the degree of
home bias in the demand for goods at the home region and η is the elasticity of substitution
between home and foreign goods. Similarly, the composite consumption good of the foreign
region, C∗t , is

C∗t =
[
(φ∗)

1
η
(
C∗F,t

) η−1
η + (1− φ∗)

1
η
(
C∗H,t

) η−1
η

] η
η−1

,
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where C∗F,t is foreign consumption of goods produced in the foreign region, C∗H,t is foreign
consumption of goods produced in the home region, and φ∗ captures the foreign region’s
degree of home bias.

The regional final goods, CH,t and CF,t, are given by

CH,t =

(∫ 1

0

(CH,t (j))
θc−1
θc dj

) θc
θc−1

and CF,t =

(∫ 1

0

(CF,t (j))
θc−1
θc dj

) θc
θc−1

,

where CH,t (j) and CF,t (j) are the home consumption of variety j ∈ [0, 1] of home- and
foreign-produced goods, respectively. We assume that goods markets are competitive and
integrated across regions. Thus, home and foreign households face the same prices for each
variety j of goods produced in the economy, denoted by PH,t (j) and PF,t (j).

Solving the cost minimization problem of home households, we obtain the following home
region’s demand for home- and foreign-produced goods:

CH,t (j) =

(
PH,t (j)

PH,t

)−θc
CH,t, CF,t (j) =

(
PF,t (j)

PF,t

)−θc
CF,t,

CH,t = φ

(
PH,t
Pt

)−η
Ct, and CF,t = (1− φ)

(
PF,t
Pt

)−η
Ct,

where

PH,t =

(∫ 1

0

(PH,t (j))1−θc dj

) 1
1−θc

, PF,t =

(∫ 1

0

(PF,t (j))1−θc dj

) 1
1−θc

,

and the home region’s composite price level, Pt, is given by

Pt =
[
φP 1−η

H,t + (1− φ)P 1−η
F,t

] 1
1−η .

Household’s total consumption spending can be expressed as follows:∫ 1

0

[PH,t(j)CH,t(j) + PF,t(j)CF,t(j)] dj = PtCt.

Similarly, foreign region’s demand for foreign- and home-produced goods are

C∗F,t (j) =

(
PF,t (j)

PF,t

)−θc
C∗F,t, C∗H,t (j) =

(
PH,t (j)

PH,t

)−θc
C∗H,t,

C∗F,t = φ∗
(
PF,t
P ∗t

)−η
C∗t , and C∗H,t = (1− φ∗)

(
PH,t
P ∗t

)−η
C∗t ,

where the foreign region’s composite price level, P ∗t , is given by

P ∗t =
[
φ∗P 1−η

F,t + (1− φ∗)P 1−η
H,t

] 1
1−η .
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Housing stock and flow. Households’ service flow of housing is proportional to their hous-
ing stock. Home region’s housing stock evolves over time by

Ht = (1− δ)Ht−1 + It, (D.28)

where It is the home region’s new housing investment and δ is the depreciation rate of the
housing stock. We assume separate housing markets in each region. The foreign region’s
housing stock evolves over time in a similar fashion.

Labor supply. To introduce wage stickiness in the output sector, we follow Schmitt-Grohe
and Uribe (2007) in assuming that labor decisions are made by a central authority within
the home household which supplies labor monopolistically to a continuum of labor markets
indexed by k ∈ [0, 1]. In each labor market k, the central authority faces a demand for labor,
Nk
t , given by

Nk
t =

(
W k
t

Wt

)−η̃
Nd
t ,

where W k
t denotes the nominal wage charged changed by the central authority in labor market

k at period t, Wt is the home region’s nominal wage index in the output sector, and Nd
t is the

population-adjusted aggregate labor demand by firms. This labor variety demand function is
later derived from the firm’s problem. The central authority takes Wt and Nd

t as exogenous
and sets W k

t to satisfy labor demand. The sum of labor supply to each labor market must be
equal to the household’s total labor supply

Nt =

∫ 1

0

Nk
t dk.

Combined with the labor variety demand function, we get

Nt = Nd
t

∫ 1

0

(
wkt
wt

)−η̃
dk, (D.29)

where we alternatively use real wage variables: wkt = W k
t /Pt and wt = Wt/Pt. In the con-

struction sector, we assume that labor markets are perfectly competitive. The foreign region’s
labor decision is made in a similar fashion.

Budget constraint. We assume incomplete financial markets across regions in the sense that
households only have access to risk-free nominal bonds. The real flow budget constraint of
the home region household is given by

Ct + qtIt +
Bt+1

Rt

+
ψb
2
B2
t+1 =

∫ 1

0

wkt

(
wkt
wt

)−η̃
Nd
t dk + wc,tNc,t +

Bt

πt
+

1

n
Tt +

1

n
Φt,

(D.30)

where qt is the real price of a housing unit (Qt/Pt), Bt+1 is real bond holdings, Rt is the
risk-free nominal interest rate between periods t and t+ 1, πt = Pt/Pt−1 is the price inflation
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rate, wc,t = Wc,t/Pt is the real wage in the construction sector, Tt is the real transfer from the
local government, and Φt =

∫ 1

0
Φt(j)dj is the aggregate of home firms’ real profits. Both the

transfer and the firms’ profits are distributed equally to the households based on the home pop-
ulation. For real bond holding Bt+1, we impose a convex portfolio holding cost of ψbB2

t+1/2
that the local government rebates equally to the households.

We introduce wage stickiness by assuming that the central authority in the household can-
not set the nominal wage optimally with probability ω̃ ∈ [0, 1] of a random labor market in
each period. When the household cannot set the nominal wage optimally in market k, we
assume W k

t = W k
t−1.

The foreign region household’s budget constraint is also written analogously with the re-
spective foreign variables with the stochastic discount factor that is common across regions.
Moreover, transfers and the firms’ profits are distributed equally to the foreign households
based on the foreign population share 1− n.

Household choice. The home household chooses Ct, It, Ht, Bt+1, wkt , Nt, and Nc,t so as to
maximize the utility function (D.27) subject to (D.29), (D.30), the wage stickiness assumption,
and a no-Ponzi constraint, taking as given the processes qt, wt, Rt, πt, Nd

t , Tt, Φt, and the
initial conditions B0 and H−1. The Lagrangian associated with the home household problem
is

L =E0

∞∑
t=0

βt {U(Ct, Ht, Nt, Nc,t;ϕt)

+ ξt

[∫ 1

0

wkt

(
wkt
wt

)−η̃
Nd
t dk + wc,tNc,t +

Bt

πt
+

1

n
Tt +

1

n
Φt

−Ct − qtIt −
Bt+1

Rt

− ψb
2
B2
t+1

]
+
ξtwt
µ̃t

[
Nt −Nd

t

∫ 1

0

(
wkt
wt

)−η̃
dk

]
+ξtνt [(1− δ)Ht−1 + It −Ht]} .

The optimal first-order conditions with respect to Ct, Bt+1, Nt, Nc,t, Ht, It, and wkt , in that
order, are given by

UC(t) = ξt, (D.31)

ξt(R
−1
t + ψbBt+1) = βEt

ξt+1

πt+1

, (D.32)

−UN(t) =
ξtwt
µ̃t

, (D.33)

−UNc(t) = ξtwc,t, (D.34)
UH(t) = ξtνt − β(1− δ)Etξt+1νt+1, (D.35)

qt = νt, (D.36)
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wkt =

{
w̃t, if wages are set optimally in t
wkt−1/πt, otherwise

, (D.37)

where w̃t is the real wage in the 1− ω̃ labor markets where the central authority can set wages
optimally in period t. In equilibrium, the real wage and labor supply are identical across
varieties that are allowed to update, which we denote as w̃t and Ñt respectively. Plugging this
into the labor demand curve, we get w̃η̃t Ñt = wη̃tN

d
t . For labor variety k with s periods after

the last optimization, its real wage wkt+s becomes

wkt+s = w̃t

s∏
τ=1

π−1
t+τ .

Separating out the Lagrangian associated with setting wages for optimizing central authorities,

Lw = Et
∞∑
s=0

(ω̃β)sξt+sN
d
t+sw

η̃
t+s

s∏
τ=1

πη̃t+τ

[
w̃1−η̃
t

s∏
τ=1

π−1
t+τ −

wt+s
µ̃t+s

w̃−η̃t

]
.

The first-order condition with respect to w̃t is

0 = Et
∞∑
s=0

(ω̃β)sξt+sN
d
t+sw

η̃
t+s

s∏
τ=1

πη̃t+τ

[(
η̃ − 1

η̃

)
w̃t

s∏
τ=1

π−1
t+τ −

wt+s
µ̃t+s

]
.

Then, the optimal w̃t is given by

w̃t =
η̃

η̃ − 1

faH,t
f bH,t

, (D.38)

where

faH,t = Et
∞∑
s=0

(ω̃β)sξt+sN
d
t+sw

η̃
t+s

(
s∏

τ=1

πη̃t+τ

)
wt+s
µ̃t+s

,

f bH,t = Et
∞∑
s=0

(ω̃β)sξt+sN
d
t+sw

η̃
t+s

(
s∏

τ=1

πη̃−1
t+τ

)
.

Note that we can write faH,t and f bH,t in the following recursive forms:

faH,t = ξtN
d
t w

η̃
t

wt
µ̃t

+ ω̃βEtπη̃t+1f
a
H,t+1, (D.39)

f bH,t = ξtN
d
t w

η̃
t + ω̃βEtπη̃−1

t+1 f
b
H,t+1. (D.40)

D.3.2 Developer

The home region’s representative developer produces new housing units, It, using construction
inputs produced in current and previous periods,

{
Ut−p|t

}
p=0,1,··· ,P , where the subscript t−p|t
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refers to stage-p construction input produced in period t− p for new housing in period t. The
production function is:

It =

(
P∑
p=0

U
θ−1
θ

t−p|t

) θ
θ−1

, θ > 0,

where the parameter θ governs the substitutability of the different stages of construction.
Stage-by-stage building of the lot takes place using the following construction technology:

Ut|t+p = Zc,t
(
Nc,t|t+p

)α (
Mt+p−P |t+p

)1−α
,

where Zc,t is an exogenous shock to construction productivity, Nc,t|t+p is time-t construction
labor input for new housing to be completed in period t + p, and Mt+p−P |t+p is the housing
permit approved in period t+p−P for new housing that is expected to be completed in period
t+ p.

Taking the real house price qt(= Qt/Pt) as well as the real input prices qM,t and wc,t(=
Wc,t/Pt) as given, the representative developer solves the following profit-maximization prob-
lem:

max
{It,Nc,t,Mt|t+P ,{Ut|t+p,Nt|t+p}Pp=0}

E0

∞∑
t=0

Λ0|t
(
qtIt − qM,tMt|t+P − wc,tNc,t

)
,

subject to Ut|t+p = Zc,tN
α
c,t|t+p

(
Mt+p−P |t+p

)1−α for p = 0, 1, · · · , P,

Nc,t =
P∑
p=0

Nc,t|t+p,

It =

(
P∑
p=0

U
θ−1
θ

t−p|p

) θ
θ−1

.

The foreign region’s representative developer solves an analogous problem.

D.3.3 Goods producer

Home region. A monopolistically competitive firm in the home region produces the tradable
j-variety output YH,t (j) using the following production technology:

YH,t (j) = ZH,tNH,t (j) ,

where ZH,t is the common total factor productivity across varieties and NH,t(j) is the labor
input. The demand for the variety that the firm is required to satisfy, Y d

H,t(j), is as follows:

Y d
H,t(j) = nCH,t(j) + (1− n)C∗H,t(j) =

(
PH,t (j)

PH,t

)−θc (
nCH,t + (1− n)C∗H,t

)
,
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where the second equality is derived from the consumption variety demand functions. The
period-t real profit is given by

ΦH,t (j) =
PH,t (j)

Pt
YH,t (j)− WtNH,t (j)

Pt
.

Prices are sticky in the sense that firms can adjust its price only with probability 1−ω in each
period. As such, the profit maximization problem of the firm that is allowed to adjust its price
is given by

max
P �H,t

Et
∞∑
s=0

ωsΛt|t+s

[
P �H,t
Pt+s

YH,t+s (j)− Wt+sNH,t+s (j)

Pt+s

]
,

subject to

YH,t+s (j) = ZH,t+sNH,t+s (j) ,

YH,t+s (j) ≥
(

P �H,t
PH,t+s

)−θc (
nCH,t+s + (1− n)C∗H,t+s

)
.

The labor input used by the j-variety producing firm is assumed to be a CES aggregate of
a continuum of labor services, Nk

H,t(j) for k ∈ [0, 1], in the following manner:

NH,t(j) =

(∫ 1

0

(Nk
H,t(j))

1−1/η̃dk

)1/(1−1/η̃)

,

where η̃ > 1 is the elasticity of substitution across labor services. In each period, the demand
for each labor variety is derived by minimizing the total labor cost,

∫ 1

0
W k
t N

k
H,t(j)dk, while

satisfying the above CES aggregation, where W k
t is the nominal wage to labor variety k in

period t. This implies the following labor variety demand:

Nk
H,t(j) =

(
W k
t

Wt

)−η̃
NH,t(j),

where

Wt =

(∫ 1

0

(W k
t )1−η̃dk

) 1
1−η̃

.

It follows that WtNH,t(j) =
∫ 1

0
W k
t N

k
H,t(j)dk.

Foreign region. A monopolistically competitive firm in the foreign region has a similar
problem. We summarize the profit maximization problem of the j-variety firm that is allowed
to adjust its price as follows:

max
P �F,t

Et
∞∑
s=0

ωsΛ∗t|t+s

[
P �F,t
P ∗t+s

YF,t+s (j)−
W ∗
t+sNF,t+s (j)

P ∗t+s

]
,
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subject to

YF,t+s (j) = ZF,t+sNF,t+s (j) ,

YF,t+s (j) ≥
(

P �F,t
PF,t+s

)−θc (
nCF,t+s + (1− n)C∗F,t+s

)
.

The labor input used by the firm in the foreign region is assumed to be a CES aggregate
analogous to firms in the home region.

D.3.4 Fiscal and monetary policy

The supply of housing permits in each region is determined by its local government, which
in turn is elastic to the region’s equilibrium house price. In detail, the home and foreign local
governments issue their respective housing permits, Mt and M∗

t , according to

Mt|t+P = qγt and M∗
t|t+P ∗ = (q∗t )

γ∗ .

The respective real cost of a housing permit is qM,t and q∗M,t. Local governments also levy
portfolio holding costs to households. Local governments follow a balanced budget in each
period:

Tt = qM,tMt|t+P + n
ψb
2
B2
t+1 and T ∗t = q∗M,tM

∗
t|t+P ∗ + (1− n)

ψb
2
B∗2t+1,

where Tt and T ∗t are real transfers to households of home and foreign local governments.
Both regions are in a monetary union. Monetary policy follows a standard Taylor rule:

Rt

R̄
=

(
π̃t
π̄

)φπ
,

where π̃t = (πt)
n (π∗t )

1−n is the population-weighted aggregate inflation, π̄ is the aggregate
inflation target, and R̄ is the subsequent nominal interest rate target. The parameter φπ is the
Taylor coefficient on the deviation of inflation from target.

D.3.5 Market clearing

Labor market. Taking into account that the output sector wage adjustments are identical at
all labor markets when allowed to change optimally, the home household’s aggregate labor
demand (D.29) could be expressed as

Nt = Nd
t

∫ 1

0

(
W k
t

Wt

)−η̃
dk

= Nd
t

(1− ω̃)

(
W̃t

Wt

)−η̃
+ (1− ω̃)ω̃

(
W̃t−1

Wt

)−η̃
+ (1− ω̃)ω̃2

(
W̃t−2

Wt

)−η̃
+ · · ·
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= (1− ω̃)Nd
t

∞∑
s=0

ω̃s(W̃t−s

Wt

)−η̃ .
This expression could be written as

Nt = Ξ̃tN
d
t , (D.41)

where

Ξ̃t = (1− ω̃)

(
w̃t
wt

)−η̃
+ ω̃πη̃t

(
w̃t−1

wt

)−η̃
Ξ̃t−1. (D.42)

Note that Ξ̃t is the wage dispersion term that could be shown as bounded below by one. The
aggregate wage index is also written as

W 1−η̃
t =

∫ 1

0

(W k
t )1−η̃dk

= (1− ω̃)W̃ 1−η̃
t + (1− ω̃)ω̃W̃ 1−η̃

t−1 + (1− ω̃)ω̃2W̃ 1−η̃
t−2 + · · ·

= (1− ω̃)W̃ 1−η̃
t + ω̃W 1−η̃

t−1 ,

which implies the following recursive form:

w1−η̃
t = (1− ω̃)w̃1−η̃

t + ω̃πη̃−1
t w1−η̃

t−1 . (D.43)

Labor market clearing in the output sector implies that the aggregation of all labor demand
across firms adjusted by the population should be equal to the per household aggregate labor
demand:

Nd
t =

1

n

∫ 1

0

NH,t(j)dj. (D.44)

Labor market in the construction sector also clears. Moreover, the foreign labor market in both
the output and construction sectors clear in a similar fashion.

Goods market. Defining per household aggregate goods production in each region as YH,t
and YF,t, we get

YH,t ≡
1

n

∫ 1

0

YH,t (j) dj = ZH,tN
d
t , and YF,t ≡

1

1− n

∫ 1

0

YF,t (j) dj = ZF,tN
d∗
t .

Then, the aggregated goods market clearing conditions are

YH,t =
1

n

∫ 1

0

Y d
H,t (j) dj =

1

n
ỸH,tΞH,t, and YF,t =

1

1− n

∫ 1

0

Y d
F,t (j) dj =

1

1− n
ỸF,tΞF,t,

where
ỸH,t ≡ nCH,t + (1− n)C∗H,t and ỸF,t ≡ nCF,t + (1− n)C∗F,t,

and ΞH,t and ΞF,t are the respective price dispersion terms:

ΞH,t =

∫ 1

0

(
PH,t (j)

PH,t

)−θc
dj and ΞF,t =

∫ 1

0

(
PF,t (j)

PF,t

)−θc
dj.
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Bond market. The nominal bond market clearing condition is

nPtBt+1 + (1− n)P ∗t B
∗2
t+1 = 0.

Resource constraint. Under a monetary union with a common nominal interest rate, we can
also derive the aggregated resource constraint by combining households’ budget constraints:

nPtCt + (1− n)P ∗t C
∗
t =nWtN

d
t +

∫ 1

0

(PH,t (j)YH,t (j)−WtNH,t (j)) dj

+ (1− n)W ∗
t N

d∗
t +

∫ 1

0

(PF,t (j)YF,t (j)−W ∗
t NF,t (j)) dj,

which implies

nCt + (1− n)C∗t = ỸH,t
PH,t
Pt

+ ỸF,t
PF,t
P ∗t

.

Lastly, we define (population-weighted) aggregate output as follows:

Yt = nYH,t + (1− n)YF,t.

D.3.6 Functional forms and calibration

Following Guren et al. (2020), we assume that consumption and leisure are substitutable in
the style of Greenwood et al. (1988), which eliminates the wealth effects of labor supply. We
also model the housing demand shock using a Stone-Geary formulation:

U (Ct, Ht, Nt, Nc,t;ϕt) =

((
Ct − ψ

1+ν
N1+ν
t − ψc

1+ν
N1+ν
c,t

)κ
(Ht − ϕt)1−κ

1− σ

)1−σ

Under this assumption, the households’ marginal utilities are defined as follows:

Uc,t = κ

((
C̃t

)κ (
H̃t

)1−κ
)1−σ

1

C̃t

Un,t = −κψ
((

C̃t

)κ (
H̃t

)1−κ
)1−σ

1

C̃t
Nν
t

Unc,t = −κψc
((

C̃t

)κ (
H̃t

)1−κ
)1−σ

1

C̃t
Nν
c,t

Uh,t = (1− κ)

((
C̃t

)κ (
H̃t

)1−κ
)1−σ

1

H̃t

where
C̃t = Ct −

ψ

1 + η
N1+ν
t − ψc

1 + η
N1+ν
c,t and H̃t = Ht − ϕt

We pick parameter values based on long-run averages or from the literature. Table A.8
presents our calibration.
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D.3.7 Model responses to shocks

We present the impulse response functions for house prices and housing investment with
regards to a common housing demand shock in our two-region general equilibrium model.
These examples show that the results for our local general equilibrium model extends to the
two-region general equilibrium model. In all cases, we assume that the persistence parameter
of the housing demand shock is 0.95.

In Figure A.7, we present the result when the home and foreign regions are only different
in terms of the long-run elasticity parameters γ > γ∗. In the left panel, we observe that the
partial equilibrium housing supply elasticity is the same in horizons lower than 12 quarters.
Afterwards, housing supply elasticity is higher in the home region, consistent with its higher
long-run elasticity. The second panel shows that house prices in the foreign region respond
higher than in the home region, consistent with the result of the first panel. Note that even
though the short-run elasticities are common across the two regions, house price responses in
this case are likely to take into account supply elasticities beyond 12 quarters. The third panel
shows the housing investment response in the two regions. Housing investment at an after 12
quarters is much higher in the home region compared to the foreign region. In this example,
we observe that the long-run elasticity difference drives the difference in house prices both in
business-cycle frequency and in the long run.

In Figure A.8, we conduct the same exercise under a different calibration. In this case, the
home and foreign regions are only different in terms of TTD (P < P ∗). In the left panel, we
observe that the partial equilibrium housing supply elasticity is different at shorter horizons,
but begins converging after 18 quarters. Note that the long-run housing supply elasticities are
the same in both regions. The second panel shows that housing prices in the foreign region
respond higher than in the home region, again consistent with the result of the first panel.
Note that even though the long-run elasticities are common across the two regions, house price
responses in this case are consistent with the supply elasticities in the short to medium run.
The third panel shows the housing investment response in the two regions consistent with the
difference in TTD. In this example, we observe that TTD alone can drive a sizable difference in
the house price response, consistent with the implied gap in the short- to medium-run housing
supply elasticities.

Figures A.9 and A.10 presents the responses when both the long-run elasticities and TTD
are different in the two regions. Note that both the long-run elasticities and TTD are within
the range of our sample counties, suggesting that our calibration exercise in these examples
are sensible. A key takeaway is that TTD can work as both widening or reversing the price
response difference between two regions. In the second case with reversal, housing supply
elasticity is lower in the home region despite the higher long-run supply elasticity, as TTD
is much higher at home. The model impulse responses in this case shows that house price
responses become higher in the home region for about the first five quarters, until house prices
in the foreign region becomes higher consistent with its lower long-run elasticity. These exam-
ples suggest the need to take into account both the short- to long-run housing supply elasticities
in accounting for house price responses to a common housing demand shock.
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D.3.8 Details: Equilibrium conditions

We first define variables for relative prices and inflation:

πt =
Pt+1

Pt
, π∗t =

P ∗t+1

P ∗t
, Xt =

P ∗t
Pt
, XH,t =

PH,t
Pt

, XF,t =
PF,t
P ∗t

,

πH,t =
XH,t

XH,t−1

πt, πF,t =
XF,t

XF,t−1

π∗t , p
�
H,t=

P �H,t
PH,t

, p�F,t=
P �F,t
PH,t

Variables

• (Home) Non-construction (7 variables):
{
CH,t, CF,t, Ct, µ̃t, Nt, N

d
t , ỸH,t

}
• (Home) Construction (7 + 3P variables):{

Nc,t, Ht, It, {Ut−p|t}Pp=0, {Nc,t|t+p}Pp=0, {µt|t+p}Pp=0, qt, qM,t, wc,t,Mt

}
• (Foreign) Non-construction (7 variables):

{
C∗H,t, C

∗
F,t, C

∗
t , µ̃

∗
t , N

∗
t , N

d∗
t , ỸF,t

}
• (Foreign) Construction (7 + 3P ∗ variables):{

N∗c,t, H
∗
t , I

∗
t , {U∗t−p|t}P

∗
p=0, {N∗c,t|t+p}P

∗
p=0, {µ∗t|t+p}P

∗
p=0, q

∗
t , q
∗
M,t, w

∗
c,t,M

∗
t

}
• Nominal variables (17 variables):{

πt, π
∗
t , πH,t, πF,t,mcH,t,mcF,t, Xt, XH,t, XF,t,ΞH,t,ΞF,t, p

�
H,t, p

�
F,t, Z̃

a
H,t, Z̃

b
H,t, Z̃

a
F,t, Z̃

b
H,t

}
• Wages (10 variables):

{
wt, w

∗
t , w̃t, w̃

∗
t , f

a
H,t, f

b
H,t, f

a
F,t, f

b
F,t, Ξ̃t, Ξ̃

∗
t

}
• Aggregate variables (3 variables): {Rt, π̃t, Yt}

• Marginal utilities (8 variables): {Uc,t, Un,t, Unc,t, Uh,t, Uc∗,t, Un∗,t, Unc∗,t, Uh∗,t}

Notices that the number of variables excluding marginal utility variables is 58+3P +3P ∗,
which is the same with the number of equations shown below (C.1)-(C.64).

• (Home) Home demand for home- and foreign-produced goods

CH,t = φ (XH,t)
−η Ct (D.45)

CF,t = (1− φ) (XF,tXt)
−η Ct (D.46)

• (Home) Supply and demand for non-construction labor

−Un,t = wt
Uc,t
µ̃t

(D.47)

Nt = Nd
t Ξ̃t (D.48)
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• (Home) Wage dispersion

Ξ̃t = (1− ω̃)

(
w̃t
wt

)−η̃
+ ω̃πη̃t

(
w̃t−1

wt

)−η̃
Ξ̃t−1 (D.49)

• (Home) Wage index

w1−η̃
t = (1− ω̃) w̃1−η̃

t + ω̃

(
wt−1

πt

)1−η̃

(D.50)

• (Home) Wage Phillips curve

w̃t =
η̃

η̃ − 1

faH,t
f bH,t

, (D.51)

faH,t = Nd
t w

η̃
t

wt
µ̃t

+ ω̃βEt
[
Uc,t+1

Uc,t
πη̃t+1f

a
H,t+1

]
(D.52)

f bH,t = Nd
t w

η̃
t + ω̃βEt

[
Uc,t+1

Uc,t
πη̃−1
t+1 f

b
H,t+1

]
(D.53)

• (Home) Housing demand

Uh,t
Uc,t

= qt − β (1− δ)Et
[
Uc,t+1

Uc,t
qt+1

]
(D.54)

• (Home) Supply of construction labor

− Unc,t = wc,tUc,t (D.55)

• (Home) Housing accumulation

Ht = (1− δ)Ht−1 + It (D.56)

• (Home) Housing construction function

It =

(
P∑
p=0

U
θ−1
θ

t−p|t

) θ
θ−1

(D.57)

• (Home) Demand for p-period ahead construction labor

wc,t = αµt|t+p
Ut|t+p
Nc,t|t+p

for p = 0, 1, · · · , P (D.58)
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• (Home) Demand for p-period ahead construction input

µt|t+p = Et

[
βp
Uc,t+p
Uc,t

qt+p

(
It+p
Ut|t+p

) 1
θ

]
for p = 0, 1, · · · , P (D.59)

• (Home) Demand for housing permit

qM,t = (1− α)Et

[
βP

Uc,t+P
Uc,t

qt+P

P∑
p=0

(
It+P

Ut+p|t+P

) 1
θ Ut+p|t+P
Mt|t+P

]
(D.60)

• (Home) Production of p-period ahead construction input

Ut|t+p = Zc,tN
α
c,t|t+p

(
Mt+p−P |t+p

)1−α for p = 0, 1, · · · , P (D.61)

• (Home) Demand for total construction labor

Nc,t =
P∑
p=0

Nc,t|t+p (D.62)

• (Home) Housing permit supply

Mt|t+P = (qt)
γ (D.63)

• (Home) Supply and demand for non-construction output

ỸH,t = nCH,t + (1− n)C∗H,t (D.64)

ỸH,tΞH,t = nZH,tN
d
t (D.65)

• (Home) Price dispersion

ΞH,t = (1− ω)
(
p�H,t
)−θc

+ ω (πH,t)
θc ΞH,t−1 (D.66)

• (Home) Aggregate price index

(πH,t)
1−θc = (1− ω)

(
p�H,t
)1−θc

+ ω (D.67)

• (Home) Phillips curve

p�H,t =
θc

θc − 1

Z̃a
H,t

Z̃b
H,t

(D.68)

Z̃a
H,t = mcH,tỸH,t + βωEt

[
Uc,t+1

Uc,t
(πH,t+1)θc Z̃a

H,t+1

]
(D.69)

Z̃b
H,t = XH,tỸH,t + βωEt

[
Uc,t+1

Uc,t
(πH,t+1)θc−1 Z̃b

H,t+1

]
(D.70)
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• (Home) Marginal cost
mcH,t =

wt
ZH,t

(D.71)

• (Foreign) Foreign demand for home- and foreign-produced good

C∗F,t = φ∗ (XF,t)
−η C∗t (D.72)

C∗H,t = (1− φ∗)
(
XH,t

Xt

)−η
C∗t (D.73)

• (Foreign) Supply and demand for non-construction labor

−Un∗,t = w∗t
Uc∗,t
µ̃∗t

(D.74)

N∗t = Nd∗
t Ξ̃∗t (D.75)

• (Foreign) Wage dispersion

Ξ̃∗t = (1− ω̃)

(
w̃∗t
w∗t

)−η̃
+ ω̃πη̃t

(
w̃∗t−1

w∗t

)−η̃
Ξ̃∗t−1 (D.76)

• (Foreign) Wage index

(w∗t )
1−η̃ = (1− ω̃) (w̃∗t )

1−η̃ + ω̃

(
w∗t−1

π∗t

)1−η̃

(D.77)

• (Foreign) Wage Phillips curve

w̃∗t =
η̃∗

η̃∗ − 1

faF,t
f bF,t

, (D.78)

faF,t = Nd∗
t (w∗t )

η̃ w
∗
t

µ̃∗t
+ ω̃βEt

[
U∗c,t+1

Uc,t

(
π∗t+1

)η̃
faF,t+1

]
(D.79)

f bF,t = Nd∗
t (w∗t )

η̃ + ω̃βEt
[
U∗c,t+1

Uc,t

(
π∗t+1

)η̃−1
f bF,t+1

]
(D.80)

• (Foreign) Housing demand

Uh∗,t
Uc∗,t

= q∗t − β (1− δ)Et
[
Uc∗,t+1

Uc∗,t
q∗t+1

]
(D.81)

• (Foreign) Supply of construction labor

− Unc∗,t = w∗c,tUc∗,t (D.82)

31



• (Foreign) Housing accumulation

H∗t = (1− δ)H∗t−1 + I∗t (D.83)

• (Foreign) Housing construction function

I∗t =

(
P ∗∑
p=0

(
U∗t−p|t

) θ−1
θ

) θ
θ−1

(D.84)

• (Foreign) Demand for p-period ahead construction labor

w∗c,t = αµ∗t|t+p
U∗t|t+p
N∗c,t|t+p

for p = 0, 1, · · · , P ∗ (D.85)

• (Foreign) Demand for p-period ahead construction input

µ∗t|t+p = Et

βpUc∗,t+p
Uc∗,t

q∗t+p

(
I∗t+p
U∗t|t+p

) 1
θ

 for p = 0, 1, · · · , P ∗ (D.86)

• (Foreign) Demand for housing permit

q∗M,t = (1− α)Et

βP ∗Uc∗,t+P ∗
Uc∗,t

q∗t+P ∗

P ∗∑
p=0

(
It+P ∗

U∗t+p|t+P ∗

) 1
θ U∗t+p|t+P ∗

M∗
t|t+P ∗

 (D.87)

• (Foreign) Production of p-period ahead construction input

U∗t|t+p = Z∗c,t
(
N∗c,t|t+p

)α (
M∗

t+p−P ∗|t+p
)1−α for p = 0, 1, · · · , P ∗ (D.88)

• (Foreign) Demand of total construction labor

N∗c,t =
P∑
p=0

N∗c,t|t+p (D.89)

• (Foreign) Housing permit supply

M∗
t|t+P ∗ = (q∗t )

γ∗ (D.90)

• (Foreign) Supply and demand for non-construction output

ỸF,t = nCF,t + (1− n)C∗F,t (D.91)

ỸF,tΞF,t = (1− n)ZF,tN
d∗
t (D.92)
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• (Foreign) Price dispersion

ΞF,t = (1− ω)
(
p�F,t
)−θc

+ ω (πF,t)
θc ΞF,t−1 (D.93)

• (Foreign) Aggregate price index

(πF,t)
1−θc = (1− ω)

(
p�F,t
)1−θc

+ ω (D.94)

• (Foreign) Phillips curve

p�F,t =
θc

θc − 1

Z̃a
F,t

Z̃b
F,t

(D.95)

Z̃a
F,t = mcF,tỸF,t + βωEt

[
Uc∗,t+1

Uc∗,t
(πF,t+1)θc Z̃a

F,t+1

]
(D.96)

Z̃b
F,t = XF,tỸF,t + βωEt

[
Uc∗,t+1

Uc∗,t
(πF,t+1)θc−1 Z̃b

F,t+1

]
(D.97)

• (Foreign) Marginal cost

mcF,t =
w∗t
ZF,t

(D.98)

• Common stochastic discount factor (“Backus-Smith”)

Uc∗,t
Uc,t

= Xt (D.99)

• Euler equation and nominal interest rate

1 = βRtEt
[
Uc,t+1

Uc,t

1

πt+1

]
(D.100)

• Aggregate output
Yt = nZH,tN

d
t + (1− n)ZF,tN

d∗
t (D.101)

• Monetary policy
Rt

R̄
=

(
π̃t
π̄

)φ
(D.102)

• Aggregate inflation
π̃t = (πt)

n (π∗t )
1−n (D.103)

• Resource constraint

nCt + (1− n)C∗t = ỸH,tXH,t + ỸF,tXF,t (D.104)
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• Relative price relationship

1 = φ (XH,t)
1−η + (1− φ) (XF,tXt)

1−η (D.105)

• Inflation relationship

π∗t =
Xt

Xt−1

πt (D.106)

πH,t =
XH,t

XH,t−1

πt (D.107)

πF,t =
XF,t

XF,t−1

π∗t (D.108)

D.3.9 Details: Steady state

Baseline GHH preference for household utility.

Ūc = κ

((
¯̃C
)κ ( ¯̃H

)1−κ
)1−σ

1
¯̃C
,

Ūn = −κψ
((

¯̃C
)κ ( ¯̃H

)1−κ
)1−σ

1
¯̃C
N̄ν ,

Ūnc = −κψc
((

¯̃C
)κ ( ¯̃H

)1−κ
)1−σ

1
¯̃C
N̄ν
c ,

Ūh = (1− κ)

((
¯̃C
)κ ( ¯̃H

)1−κ
)1−σ

1
¯̃H
,

where

¯̃C = C̄ − ψ

1 + ν
N̄1+ν − ψc

1 + ν
N̄1+ν
c ,

¯̃H = H̄t − ϕ̄

• (Home) Home demand for home- and foreign-produced goods

C̄H = φ
(
X̄H

)−η
C̄

C̄F = (1− φ)
(
X̄F X̄

)−η
C̄

• (Home) Supply and demand for non-construction labor

¯̃µ =
η̃

η̃ − 1

−Ūn = w̄
Ūc
¯̃µ
⇔ ψ =

1
¯̃µ

w̄

N̄ ν

N̄ = N̄d
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• (Home) Wage dispersion
¯̃Ξ = 1

• (Home) Wage index
w̄ = ¯̃w

• (Home) Wage Phillips curve

¯̃w =
η̃

η̃ − 1

f̄aH
f̄ bH
,

f̄aH =
1

1− ω̃β
N̄dw̄1+η̃ 1

¯̃µ

f̄ bH =
1

1− ω̃β
N̄dw̄η̃

• (Home) Housing demand (
1− κ
κ

) ¯̃C
¯̃H

= (1− (1− δ) β) q̄

• (Home) Supply of construction labor

−Ūnc = w̄cŪc

• (Home) Housing accumulation
δH̄ = Ī

• (Home) Housing construction function

Ī =

(
P∑
p=0

Ū
θ−1
θ

p

) θ
θ−1

• (Home) Demand for p-period ahead construction labor

w̄c = αµ̄p
Ūp
N̄c,p

for p = 0, 1, · · · , P

• (Home) Demand for p-period ahead construction input

µ̄p = βpq̄

(
Ī

Ūp

) 1
θ

for p = 0, 1, · · · , P
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• (Home) Demand for housing permit

q̄M = (1− α)

[
P∑
p=0

βpµ̄P−p
ŪP−p
M̄

]

= (1− α) βP q̄
Ī

M̄

• (Home) Production of p-period ahead construction input

Ūp = Z̄c
(
N̄c,p

)α (
M̄
)1−α for p = 0, 1, · · · , P

• (Home) Demand for total construction labor

N̄c =
P∑
p=0

N̄c,p

• (Home) Supply of housing permit

M̄ = (q̄)γ

• (Home) Supply and demand for non-construction output

¯̃YH = nC̄H + (1− n) C̄∗H
¯̃YH = nZ̄HN̄

d

• (Home) Price dispersion of home-produced good

Ξ̄H = 1

• (Home) Aggregate price index

p̄�H = 1

• (Home) Phillips curve

p̄�H,t =
θc

θc − 1

¯̃Za
H

¯̃Zb
H

¯̃Za
H =

1

1− ωβ
m̄cH

¯̃YH

¯̃Zb
H =

1

1− ωβ
X̄H

¯̃YH
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• (Home) Marginal cost

m̄cH =
w̄

Z̄H

• (Foreign) Foreign demand for home- and foreign-produced good

C̄∗F = φ∗
(
X̄F

)−η
C̄∗

C̄∗H = (1− φ∗)
(
X̄H

X̄

)−η
C̄∗

• (Foreign) Supply and demand for non-construction labor

−Ūn∗ = w̄∗
Ūc∗
¯̃µ∗

N̄∗ = N̄d∗

• (Foreign) Wage dispersion
¯̃Ξ∗ = 1

• (Foreign) Wage index
w̄∗ = ¯̃w∗

• (Foreign) Wage Phillips curve

¯̃w∗ =
η̃∗

η̃∗ − 1

f̄aF
f̄ bF
,

f̄aF =
1

1− ω̃β
N̄d∗
t (w̄∗)1+η̃ 1

¯̃µ∗

f̄ bF =
1

1− ω̃β
N̄d∗ (w̄∗)η̃

¯̃µ∗ =
η̃∗

η̃∗ − 1

• (Foreign) Housing demand(
1− κ
κ

) ¯̃C∗

¯̃H∗
= (1− (1− δ) β) q̄∗

• (Foreign) Supply of construction labor

−Ūnc∗ = w̄∗c Ūc∗

• (Foreign) Housing accumulation
δH̄∗ = Ī∗
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• (Foreign) Housing construction function

Ī∗ =

(
P ∗∑
p=0

(
Ū∗p
) θ−1

θ

) θ
θ−1

• (Foreign) Demand for p-period ahead construction labor

w̄∗c = αµ̄∗p
Ū∗p
N̄∗c,p

for p = 0, 1, · · · , P ∗

• (Foreign) Demand for p-period ahead construction input

µ̄∗p = βpq̄∗

(
Ī∗

Ū∗p

) 1
θ

for p = 0, 1, · · · , P ∗

• (Foreign) Demand for housing permit

q̄∗M = (1− α)

[
P ∗∑
p=0

βpµ̄∗P ∗−p
ŪP ∗−p
M̄∗

]

= (1− α) βP
∗
q̄∗
Ī∗

M̄∗

• (Foreign) Production of p-period ahead construction input

Ū∗p = Z̄∗c
(
N̄∗c,p

)α (
M̄∗)1−α for p = 0, 1, · · · , P ∗

• (Foreign) Demand for total construction labor

N̄∗c =
P ∗∑
p=0

N̄∗c,p

• (Foreign) Supply of housing permit

M̄∗ = (q̄∗)γ
∗

• (Foreign) Supply and demand for non-construction output

¯̃YF = nC̄F + (1− n) C̄∗F
¯̃YF = (1− n) Z̄F N̄

∗

• (Foreign) Price dispersion of foreign-produced good

Ξ̄F = 1
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• (Foreign) Aggregate price index

p̄�F = 1

• (Foreign) Phillips curve

p̄�F =
θc

θc − 1

¯̃Za
F

¯̃Zb
F

¯̃Za
F =

1

1− ωβ
m̄cF

¯̃YF

¯̃Zb
F =

1

1− ωβ
X̄F

¯̃YF

• (Foreign) Marginal cost

m̄cF =
w̄∗

Z̄F

• “Backus-Smith”
Ūc∗

Ūc
= X̄

• Euler equation and nominal interest rate

R̄ =
1

β

• Aggregate output
Ȳ = nZ̄HN̄

d + (1− n) Z̄F N̄
d∗

• Resource constraint

nC̄ + (1− n) C̄∗ = ¯̃YHX̄H + ¯̃YF X̄F

• Relative price relationship

1 = φ
(
X̄H

)1−η
+ (1− φ)

(
X̄F X̄

)1−η

• Inflation relationship

π̄∗ = π̄ = π̄H = π̄F
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Figure A.1: TTD based on preliminary approval date

Note: The kernel density is plotted for a range of TTD data from 0 days to 5,000 days.
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Figure A.2: Supply elasticities in each horizon (θ = 0.01)

Note: The left panel shows the scatter plot comparing the Saiz supply elasticity and the T−horizon supply
elasticities with T = 4, 16, 32 quarters. The middle panel of this figure shows the Spearman’s rank correlation
of our horizon-specific elasticities with the Saiz elasticity. The right panel shows the cross-county variation
of the T−horizon supply elasticities when we use (i) the TTD measure constructed by using regression (3) in
Table 3 (blue solid line) and (ii) the median county TTD measure of 11 quarters (red dashed line). We set the
elasticity of substitution across construction stages (θ) as 0.01.
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Figure A.3: Supply elasticities in each horizon (θ = 2.0)

Note: The left panel shows the scatter plot comparing the Saiz supply elasticity and the T−horizon supply
elasticities with T = 4, 16, 32 quarters. The middle panel of this figure shows the Spearman’s rank correlation
of our horizon-specific elasticities with the Saiz elasticity. The right panel shows the cross-county variation
of the T−horizon supply elasticities when we use (i) the TTD measure constructed by using regression (3) in
Table A.2 (blue solid line) and (ii) the median county TTD measure of 11 quarters (red dashed line). We set
the elasticity of substitution across construction stages (θ) as 2.0.
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Figure A.4: Cross-sectional correlation between annual HPI growth and housing unit growth

Note: This figure shows the cross-county rank correlation coefficients between one-year HPI growth and one-
year housing unit growth from 2001 through 2019. County-level housing units are from the Census Bureau’s
Annual Estimates of County Housing Units and county-level house price data are from Federal Housing
Finance Agency. Green line shows average of correlation coefficients from 2001 to 2019 and red line shows
the average correlation excluding the Great Recession period (2007-09).
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Figure A.6: House price growth regression of short-run elasticities
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Figure A.7: Model Responses to Housing Demand Shocks in Each Region (Different γ)
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Figure A.8: Model Responses to Housing Demand Shocks in Each Region (Different P )
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Figure A.9: Model Responses to Housing Demand Shocks in Each Region (Different γ and P
1)

Notes:
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P 2)

Notes:
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Table A.1: New housing completions by each year between 2003 and 2019

(unit: 1, 000 housing) Zonda Census Coverage

Total housing

2003 555 1, 677 33%
2004 820 1, 835 45%
2005 835 1, 929 43%
2006 902 1, 989 45%
2007 754 1, 514 50%
2008 495 1, 127 44%
2009 348 796 44%
2010 319 654 49%
2011 264 585 45%
2012 301 641 47%
2013 419 763 55%
2014 344 883 39%
2015 372 965 39%
2016 417 1, 061 39%
2017 465 1, 152 40%
2018 496 1, 190 42%
2019 504 1, 260 40%

Single family housing

2003 458 1, 381 33%
2004 672 1, 528 44%
2005 612 1, 634 37%
2006 640 1, 662 38%
2007 537 1, 228 44%
2008 361 826 44%
2009 247 522 47%
2010 234 495 47%
2011 202 446 45%
2012 237 478 50%
2013 316 570 55%
2014 282 619 46%
2015 302 647 47%
2016 342 737 46%
2017 381 795 48%
2018 405 842 48%
2019 405 904 45%

Note: “Zonda” indicates total new housing completions for each year in our data set. “Census” indicates total
new housing completions for each year in the Census Bureau’s SOC. “Coverage” is the ratio between “Zonda”
and “Census” in percentage. 49



Table A.2: Section TTD regression results: Local controls

Variables (1) (2) (3)

Bartik 0.277***
(0.0355)

Sand state −0.101***
(0.00866)

Coastal state 0.0132**
(0.00599)

Immigrant 0.400***
(0.0850)

College+ 0.0841
(0.0654)

Log(population density) 0.0335***
(0.00322)

Log(county gdp) −0.100***
(0.0107)

Builder fixed effect X X X
Year fixed effect X X X
Local controls X
Local controls × Year X

Constant 4.505*** 4.432*** 5.284***
(0.0505) (0.0883) (0.184)

Observations 104, 196 104, 196 104, 196
R-squared 0.282 0.289 0.330

Note: Same as Table [3] in the main text. Regression on log(TTD). *** p<0.01, ** p<0.05, * p<0.1. Robust
standard errors in parentheses.
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Table A.3: Section TTD statistics (25 percent completion)

(unit: days) Land TTD Building TTD Total TTD

Mean 573 568 1, 141
Std. dev. 767 667 1, 009
IQR 458 454 911

P10 91 92 365
P25 181 184 458
P50 275 365 821
P75 639 638 1, 369
P90 1, 278 1, 188 2, 556

Observations 104, 936 104, 936 104, 936

Note: Each observation is a subdivision or a section of a subdivision when there are multiple sections in a subdi-
vision. IQR stands for the interquartile range (P75−P25). Five different percentiles of each TTD distribution are
shown, e.g. P50 referring to the median (50th percentile) of the distribution.
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Table A.4: Section TTD regression results (25 percent completion)

Variables (1) (2) (3)

Log(number of units) 0.124*** 0.131*** 0.128***
(0.00442) (0.00453) (0.00437)

Log(lot size) 0.126*** 0.135*** 0.135***
(0.00479) (0.00492) (0.00478)

Single family − − −

Townhouse 0.180*** 0.174*** 0.164***
(0.0115) (0.0118) (0.0116)

Condo 0.176*** 0.218*** 0.244***
(0.0413) (0.0414) (0.0392)

Duplex −0.0197 −0.0255 −0.0157
(0.0307) (0.0308) (0.0297)

Etc. 0.0296 0.0473* 0.0426*
(0.0253) (0.0251) (0.0235)

Builder fixed effect X X X
Year fixed effect X X X
Local controls X
Local controls × Year X

Constant 4.524*** 4.252*** 4.901***
(0.0513) (0.0894) (0.177)

Observations 104, 936 104, 936 104, 936
R-squared 0.231 0.240 0.277

Note: Regression with log(TTD) as the dependent variable. Local control variables include Bartik-type predicted
industry employment growth, indicators for sand state and coastal state, population share of immigrants, popu-
lation share of college educated, population density, and county real GDP. Robust standard errors are reported in
parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.5: County-level TTD statistics (25 percent completion)

(unit: days) Raw TTD Reg. (1) Reg. (2) Reg. (3)

Mean 848 797 790 798
Std. dev. 452 330 324 326
IQR 364 358 346 312

P10 458 472 442 470
P25 639 611 603 628
P50 821 760 752 764
P75 1, 003 970 949 939
P90 1, 096 1, 172 1, 126 1, 119

Observations 298 298 298 298

Note: Each observation is a county’s median TTD. We use counties with at least 10 completed sections observed.
IQR stands for the interquartile range (P75−P25). Five different percentiles of each TTD distribution are shown,
e.g. P50 referring to the median (50th percentile) of the distribution.
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Table A.6: County-level TTD regression results (25 percent completion)

Variables Reg. (1) Reg. (2) Reg. (3)

Saiz elasticity −0.176*** −0.150*** −0.132***
(0.041) (0.042) (0.037)

Rainfall intensity 0.108*** 0.082*** 0.076***
(0.023) (0.023) (0.022)

Heat 0.042* 0.060*** 0.053**
(0.021) (0.022) (0.021)

Observations 223 223 223
R-squared 0.216 0.190 0.182

Note: We use counties with at least 10 completed sections observed. “Rainfall intensity” measures the rainfall
inches per hour on a storm of one-hour duration and a 100-year return period (Data source: National Oceanic
and Atmospheric Administration’s Atlas 14 precipitation frequency estimates). “Heat”, i.e. cooling degree days,
is a measure of the year’s temperature hotness, calculated as the difference between the daily temperature mean
(the sum of the high and low temperatures divided by two) and 65 degrees Fahrenheit, multiplied by the number
of days with a positive value of this difference in a given year (Data source: National Centers for Environmental
Information’s Annual Climatological Data). Robust standard errors are reported in parentheses. *** p<0.01, **
p<0.05, * p<0.1.
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Table A.7: Local GE Model: Calibration

Value Description Source/Target

β 0.98
1
4 Time preference Quarterly frequency

σ 2.0 Inverse of EIS Guren et al. (2020)
ν 1.0 Inverse of Frisch elasticity Guren et al. (2020)
ψn 1.0 Labor supply disutility parameter Steady-state labor (N̄n = 1)
ψ 0.05 Construction labor supply disutility parameter Steady-state construction labor (N̄ = 1)
θ 0.5 ES between different stages of housing production Assigned
α 0.385 Construction elasticity of labor Construction labor income share (KLEMS)
κ 0.75 Preference weight on effective consumption Expenditure share on housing (CEX)
δ 0.0075 Housing depreciation rate Guren et al. (2020)
ψb 0.001 Scale of the portfolio holding cost Guren et al. (2020)
ρϕ 0.95 Persistence of housing demand shock Guren et al. (2020)

Notes: This table shows model parameter values used for our local GE model simulation. See Section D.1.4
for details.
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Table A.8: Calibration

Value Description Source/Target

β 0.98
1
4 Time preference Quarterly frequency

κ 0.58 Preference weight on effective consumption Guren et al. (2020)
σ 2.0 Inverse of EIS Guren et al. (2020)
ν 1.0 Inverse of Frisch elasticity Guren et al. (2020)
φ 0.4 Degree of home bias in the home region Guren et al. (2020)
φ∗ 0.4 Degree of home bias in the foreign region Guren et al. (2020)
η 2.0 ES between goods produced in home and foreign region Assigned
θ 0.5 ES between different stages of housing production Assigned
θc 5.0 ES across differentiated goods in each region Iacoviello and Neri (2010)
ω 0.84 Degree of price stickiness Iacoviello and Neri (2010)
ω 0.91 Degree of wage stickiness Iacoviello and Neri (2010)
η̃ 5.0 ES across differentiated goods in each region Iacoviello and Neri (2010)
δh 0.01 Housing depreciation rate Iacoviello and Neri (2010)
α 0.385 Construction elasticity of labor Guren et al. (2020)
φπ 1.5 Inflation feedback in Taylor rule Standard

Notes: This table shows model parameter values used for our baseline simulation. See Section D.3.6 for
details.
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