
Dynamic Rational Inattention Problems (DRIPs)*

Hassan Afrouzi†

Columbia University
Choongryul Yang‡

Federal Reserve Board

March 28, 2021

Abstract

This document provides a hands-on introduction to DRIPs.jl, which is a Julia software
package that provides a fast and robust method for solving LQG Dynamic Rational Inatten-
tion models using the methods developed by Afrouzi and Yang (2019). The layout and the
content of this document closely follows the documentation released with DRIPs.jl, avail-
able at https://afrouzi.com/DRIPs.jl/dev/. A twin Matlab package is available at https:
//github.com/choongryulyang/DRIPs.m.

Contents

1 Overview 2
1.1 Installation . 2
1.2 Definition of the Problem . 2
1.3 Steady State of DRIPs . 4
1.4 Transition Dynamics of DRIPs . 4
1.5 Impulse Response Functions . 4
1.6 Simulations of DRIPs . 4

2 Examples and Replications 4
2.1 Pricing under RI without Endogenous Feedback . 4
2.2 Pricing under RI with Endogenous Feedback . 11
2.3 Replication of Maćkowiak and Wiederholt (2009) . 17
2.4 Replication of Sims (2010) . 25
2.5 Replication of Maćkowiak, Matějka and Wiederholt (2018) 33
2.6 Replication of the Quantitative Analysis in Afrouzi and Yang (2019) 53

References 67
*The views expressed here are those of the authors and do not necessarily reflect those of the Federal Reserve Board

or the Federal Reserve System. First version: Feb 2021.
†Department of Economics, Columbia University, 420 W 118th Street, New York, NY 10027, U.S.A. Email:

ha2475@columbia.edu .
‡Federal Reserve Board of Governors, 20th Street and Constitution Avenue NW, Washington, DC 20551, U.S.A.

Email: choongryul.yang@frb.gov.

1

https://github.com/afrouzi/DRIPs.jl
https://afrouzi.com/DRIPs.jl/dev/
https://github.com/choongryulyang/DRIPs.m
https://github.com/choongryulyang/DRIPs.m
mailto:ha2475@columbia.edu
mailto:choongryul.yang@frb.gov

1 Overview

1.1 Installation

To add the package, execute the following in Julia REPL:

using Pkg; Pkg.add("DRIPs");

To import and use the package, execute:

using DRIPs;

1.2 Definition of the Problem

A LQG dynamic rational inattention problem (DRIP) is defined as the following, where at any
point in time an agent chooses a vector of actions~at ∈ Rm to track a Gaussian stochastic process
~xt ∈ Rn:

min
{~at}t≥0

E

[
∞

∑
t=0

βt(~at −~x′tH)′(~at −~x′tH) + ωI(~at;~xt|~at−1)|~a−1

]
s.t. ~xt = A~xt−1 + Q~ut, ~ut ∼ N (0, Ik×k)

~a−1 given.

Here:

• ~at ∈ Rm is the vector of the agent’s actions at time t (a firms choosing a price, or a househld
choosing consumption and labor etc.) We denote the number of actions by m.

• ~xt ∈ Rn is the vector of the shocks that the agent faces at time t that are exogenous to her
decision, but could be endogenous to the GE model (marginal cost of a firm, real interest
rates etc.) We denote the number of shocks by n.

Such quadratic payoff functions can be derived as a second-order approximation to a general
twice differentiable function v(~at;~xt) and applying a proper change of variables (for instance,
normalizing the Hessian of v with respect to a to identity, or in case of endogenous state variables,
writing the innovation to the agent’s action in terms of the agent’s belief about ~xt).1

Parameters A DRIP is characterized by the following parameters:

1See, for instance, Mackowiak and Wiederholt (2020) for such a treatment of endogenous state variables.

2

• ω ∈ R+: cost of 1 bit of information in units of the agent’s payoff.

• β ∈ [0, 1]: rate of discounting information.

• A ∈ Rn×n, Q ∈ Rn×k: Determine the state space representation of ~xt.

• H ∈ Rn×m: interaction of payoffs with shocks. This comes from a second order approxima-
tion to the utility function and is such that under full information~a∗ = H′~x.

Solution The solution to the dynamic rational inattention problem is a joint stochastic process
between the actions and the states: {(~at,~xt) : t ≥ 0}. Moreover, in some economic applications,
we are also interested in the law of motion for the agent’s belief about ~xt under the optimal in-
formation structure x̂t = Et[~xt] where the expectation is taken conditional on the agent’s time t
information.

Theorem 2.2 and Proposition 2.3 in Afrouzi and Yang (2019) characterize this joint distribution as
a function of a tuple (Kt, Yt, Σz,t) where

~at = H′ x̂t = H′Ax̂t−1 + Yt
′(~xt −Ax̂t−1) +~zt

x̂t = Ax̂t−1 + KtY′t(~xt −Ax̂t−1) + Kt~zt, ~z ∼ N (0, Σz)

Here,

• Kt ∈ Rn×m is the Kalman-gain matrix of the agent in under optimal information acquisition
at time t.

• Yt ∈ Rm×m is the loading of optimal signals on the state at time t.

• Σz,t ∈ Rm×m is the variance-covariance matrix of the agent’s rational inattention error at
time t.

In addition to these, we might also be interested in the agent’s prior and posterior subjective
uncertainty, along with the continuation value that she assigns to information:

• Σp,t = Var(~xt|~at) ∈ Rn×n.

• Σ−1,t = Var(~xt|~at−1) ∈ Rn×n,

• Ωt ∈ Rn×n.

where the matrix Ωt captures the value of information (see Afrouzi and Yang (2019) for de-
tails).

3

1.3 Steady State of DRIPs

Use function Drip(ω, β, A, Q, H) to store and solve for the steady state of a DRIP. It takes the

primitives (ω, β, A, Q, H) as arguments and returns the solution of the model within a Drip type
structure that (1) stores all the primitives of the problem and (2) returns the steady state solution
information structure of the model in a field called ss that is of type DRIPs.SteadyState .

1.4 Transition Dynamics of DRIPs

The Euler equation derived in Afrouzi and Yang (2019) for the also allows us to characterize the
transition path of the information structure over time for an arbitrary initial prior.

The function Trip(P::Drip,s0) takes a Drip type structure along with an initial condition s0

as an input and returns a Trip structure that summarizes the transition path of the optimal infor-
mation structure. The initial condition s0 can be given either as an initial prior covariance matrix
or alternatively as a one time signal about the state that perturbs the steady state prior.

1.5 Impulse Response Functions

Once the model is solved, one can generate the impulse response functions of actions and beliefs
using the laws of motion stated above.

We have also included a built-in function that generates these IRFs. The function irfs(P::Drip)

takes a Drip structure as input and returns the irfs of the state, beliefs and actions to all structural
shocks within a Path structure.

The function also returns IRFs for transition dynamics if an initial signal is specified.

1.6 Simulations of DRIPs

Once the model is solved, one can also generate the simulated paths for fundamental, actions and
beliefs..

We have also included a built-in function that generates these IRFs. The function simulate(P::Drip)

takes a Drip structure as input and returns a simulated path of the state, beliefs and actions to all
structural shocks within a Path structure.

2 Examples and Replications

2.1 Pricing under RI without Endogenous Feedback

This document goes through a couple of examples for solving pricing under rational inattention
without endogenous feedback using the DRIPs package. See Afrouzi and Yang (2019) for back-
ground on the theory.

4

2.1.1 One Shock Case

There is a measure of firms indexed by i ∈ [0, 1]. Firm i chooses its price pi,t at time t to track its
ideal price p∗i,t. Formally, her flow profit is

−(pi,t − p∗i,t)
2.

We start by assuming that p∗i,t = qt where

∆qt = ρ∆qt−1 + ut, ut ∼ N (0, σ2
u)

Here qt can be interpreted as money growth or the nominal aggregate demand. Therefore, the
state-space representation of the problem is

~xt =

[
qt

∆qt

]
=

[
1 ρ

0 ρ

]
︸ ︷︷ ︸

A

~xt−1 +

[
σu

σu

]
︸ ︷︷ ︸

Q

ut,

p∗i,t =

[
1
0

]
︸ ︷︷ ︸

H

′

~xt

The following instructions implement this model in DRIPs.

Include the package:

using DRIPs;

Assign value to deep parameters and define the structure of the problem:

ρ = 0.6; #persistence of money growth

σ_u = 1; #std. deviation of shocks to money growth

Primitives of the DRIP:

ω = 100;

β = 0.96^0.25;

A = [1 ρ; 0 ρ];

Q = σ_u*[1; 1];

H = [1; 0];

Get solution:

5

ex1 = Drip(ω,β,A,Q,H);

Get IRFs:

ex1irfs = irfs(ex1, T=20);

Let’s plot how the average price p =
∫ 1

0 pi,tdi responds to a shock to money growth:

using Plots, LaTeXStrings; pyplot();

plot(1:ex1irfs.T,[ex1irfs.x[1,1,:],ex1irfs.a[1,1,:]],

xlabel = "Time",

label = [L"Nominal Agg. Demand (q)" L"Price (p)"],

title = "IRFs to 1 Std. Dev. Expansionary Shock",

xlim = (1,ex1irfs.T),

lw = 3,

legend = :bottomright,

legendfont = font(12),

tickfont = font(12),

framestyle = :box)}

6

We can also plot the IRFs of inflation πt ≡ pt − pt−1 and output yt ≡ qt − pt to 1 percent expan-
sionary shock to q:

p1 = plot(1:ex1irfs.T,

ex1irfs.x[1,1,:]-ex1irfs.a[1,1,:],

title = L"Output (y_t)")

p2 = plot(1:ex1irfs.T,

[ex1irfs.a[1,1,1];ex1irfs.a[1,1,2:end]-ex1irfs.a[1,1,1:end-1]],

title = L"Inflation (π_t)")

plot(p1,p2,

layout = (1,2),

xlim = (1,ex1irfs.T),

lw = 3,

legend = false,

tickfont = font(12),

framestyle = :box)

7

2.1.2 Two Shocks Case

Suppose now that p∗i,t = qt − zt where

∆qt = ρ∆qt−1 + ut, ut ∼ N (0, σ2
u)

zt ∼ N (0, σ2
z)

Here qt can be interpreted as money growth and zi,t as an idiosyncratic TFP shock. Therefore,

~xt =

 qt

∆qt

zt

 =

 1 ρ 0
0 ρ 0
0 0 0


︸ ︷︷ ︸

A

~xt−1 +

 σu 0
σu 0
0 σz


︸ ︷︷ ︸

Q

[
ut

zt

]
,

p∗i,t =

 1
0
−1


︸ ︷︷ ︸

H

′

~xt

The following instructions implement this model in DRIPs.

Assign values:

ρ = 0.6; #persistence of money growth

σ_u = 1; #std. deviation of shocks to money growth

σ_z = 10^0.5; #std. deviation of idiosyncratic shock

Primitives of the DRIP:

ω = 100;

β = 0.96^0.25;

A = [1 ρ 0; 0 ρ 0; 0 0 0];

Q = [σ_u 0; σ_u 0; 0 σ_z];

H = [1; 0; -1];

Get solution:

ex2 = Drip(ω,β,A,Q,H);

Get IRFs:

ex2irfs = irfs(ex2, T=20);

8

To get the IRFs simply use the law of motion for actions:

p1 = plot(1:ex2irfs.T,[ex2irfs.x[1,1,:],ex2irfs.a[1,1,:]],

title = L"IRFs to q shock");

p2 = plot(1:ex1irfs.T,[ex2irfs.x[1,2,:],ex2irfs.a[1,2,:]],

title = L"IRFs to z shock");

plot(p1,p2, layout = (1,2),

xlabel = "Time", xlim = (1,ex2irfs.T),

label = [L"Agg. Demand (q)" L"Price (p)"],

lw = 3,

legend = :bottomright,

legendfont = font(12), tickfont = font(12),

framestyle = :box)

9

More IRFs:

p1 = plot(1:ex2irfs.T,ex2irfs.x[1,1,:]-ex2irfs.a[1,1,:],

title = L"Output ($q_0\to y_t$)");

p2 = plot(1:ex2irfs.T,

[ex2irfs.a[1,1,1];ex2irfs.a[1,1,2:end]-ex2irfs.a[1,1,1:end-1]],

title = L"Inflation ($q_0\to \pi_t$)")

p3 = plot(1:ex2irfs.T,

ex2irfs.x[1,2,:]-ex2irfs.a[1,2,:],

title = L"Output ($z_0\to y_t$)");

p4 = plot(1:ex2irfs.T,

[ex2irfs.a[1,2,1];ex2irfs.a[1,2,2:end]-ex2irfs.a[1,2,1:end-1]],

title = L"Inflation ($z_0\to \pi_t$)")

plot(p1,p2,p3,p4, layout = (2,2),

xlim = (1,ex2irfs.T),

lw = 3,

legend = false,

tickfont = font(12),

framestyle = :box)

10

2.2 Pricing under RI with Endogenous Feedback

This example solves a pricing problem under rational inattention with endogenous feedback using
the DRIPs package.

2.2.1 Setup

Problem Suppose now that there is general equilibrium feedback with the degree of strategic
complementarity α:

p∗i,t = (1− α)qt + αpt

where

∆qt = ρ∆qt−1 + ut, ut ∼ N (0, σ2
u)

pt ≡
∫ 1

0
pi,tdi

Note that now the state space representation for p∗i,t is no longer exogenous and is determined in
the equilibrium. However, we know that this is a Guassian process and by Wold’s theorem we
can decompose it to its MA(∞) representation:

p∗i,t = Φ(L)ut

where Φ(.) is a lag polynomial and ut is the shock to nominal demand. Here, we have basically
guessed that the process for p∗i,t is determined uniquely by the history of monetary shocks which
requires that rational inattention errors of firms are orthogonal (See Afrouzi, 2020). Our objective
is to find Φ(.).

Since we cannot put MA(∞) processes in the computer, we approximate them with truncation.
In particular, we know for stationary processes, we can arbitrarily get close to the true process by
truncating MA(∞) processes to MA(T) processes. Our problem here is that p∗i,t has a unit root and
is not stationary. We can bypass this issue by re-writing the state space in the following way:

p∗i,t = φ(L)ũt, ũt = (1− L)−1ut =
∞

∑
j=0

ut−j

where ũt−j is the unit root of the process and basically we have differenced out the unit root from
the lag polynomial, and φ(L) = (1− L)Φ(L). Notice that since the original process was difference
stationary, differencing out the unit root means that φ(L) is now in `2, and the process can now be
approximated arbitrarily precisely with truncation.

Matrix Notation For a length of truncation L, let ~xt ≡ (ũt, ũt− 1, . . . , ũt− (L + 1)) ∈ RL. Then,
note that p∗i,t ≈ H′~xt where H ∈ RL is the truncated matrix analog of the lag polynominal, and

11

is endogenous to the problem. Our objective is to find the general equilibrium H along with the
optimal information structure that it implies.

Moreover, note that
qt = H′q~xt, H′q = (1, ρ, ρ2, . . . , ρL−1)

We will solve for φ by iterating over the problem. In particular, in iteration n ≥ 1, given the guess
H(n−1), we have the following state space representation for the firm’s problem:

~xt =



1 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


︸ ︷︷ ︸

A

~xt−1 +



σu

0
0
...
0


︸ ︷︷ ︸

Q

ut,

p∗i,t = H′(n−1)~xt

Then we can solve the rational inattention problem of all firms and get the new guess for p∗t :

p∗t = (1− α)qt + αpt

= (1− α)
∞

∑
j=0

αjq(j)
t ,

q(j)
t ≡

qt j = 0∫ 1
0 Ei,t[q

(j−1)
t]di j ≥ 1

where q(j)
t is the j’th order belief of firms, on average, of qt. Now, we need to write these higher

order beliefs in terms of the state vector. Suppose, for a given j, there exists Xj ∈ RL×L such
that

q(j)
t = H′qXj~xt

This clearly holds for j = 0 with X0 = I.

12

Now, note that

q(j+1)
t =

∫ 1

0
Ei,t[q

(j)
t]di

= H′qXj

∫ 1

0
Ei,t[~xt]di

= H′qXj

∞

∑
j=0

[(I−K(n)Y
′
(n))A]jK(n)Y

′
(n)~xt−j

≈ H′qXj

[
∞

∑
j=0

[(I−K(n)Y
′
(n))A]jK(n)Y

′
(n)M

′j
]

︸ ︷︷ ︸
≡X(n)

~xt = H′qXjX(n)~xt

where the (n) subscripts refer to the solution of the RI problem in the (n)’th iteration. Note that
this implies

Xj = Xj
(n), ∀j ≥ 0⇒ q(j)

t = Xj
(n)~xt

This gives us an updated guess for H:

p∗t = (1− α)H′q

[
∞

∑
j=0

αjXj
(n)

]
︸ ︷︷ ︸
≡Xp,(n)

~xt

⇒ H(n) = (1− α)X′p,(n)Hq

We iterate until convergence of H(n).

2.2.2 Implementation

The following instructions implement this model in DRIPs.

Include the package:

using DRIPs;

Assign values:

ρ = 0.6; #persistence of money growth

σ_u = 0.1; #std. deviation of shocks to money growth

α = 0.8; #degree of strategic complementarity

L = 40; #length of truncation

Hq = ρ.^(0:L-1); #state-space rep. of Δq

13

Primitives of the DRIP:

using LinearAlgebra;

ω = 0.2;

β = 0.99;

A = [1 zeros(1,L-2) 0; Matrix(I,L-1,L-1) zeros(L-1,1)];

Q = [σ_u; zeros(L-1,1)];

14

A Function for Finding the Fixed Point Let us now define a function that solves the GE problem
and returns the solution in a Drip structure:

function ge_drip(ω,β,A,Q, #primitives of drip

α, #strategic complementarity

Hq, #state space rep. of Δq

L; #length of truncation

H0=Hq, #optional: initial guess for H

maxit=200, #optional: max number of iterations for GE code

tol=1e-4) #optional: tolerance for iterations

err = 1;

iter = 0;

M = [zeros(1,L-1) 0; Matrix(I,L-1,L-1) zeros(L-1,1)];

while (err > tol) & (iter < maxit)

if iter == 0

global ge = Drip(ω,β,A,Q,H0, w = 0.9);

else

global ge = Drip(ω,β,A,Q,H0;Ω0 = ge.ss.Ω ,Σ0 = ge.ss.Σ_1,maxit=15);

end

XFUN(jj) = ((I-ge.ss.K*ge.ss.Y’)*ge.A)^jj * (ge.ss.K*ge.ss.Y’) * (M’)^jj

X = DRIPs.infinitesum(XFUN; maxit=L, start = 0);

XpFUN(jj) = α^jj * X^(jj)

Xp = DRIPs.infinitesum(XpFUN; maxit=L, start = 0);

H1 = (1-α)*Xp’*Hq;

err= 0.5*norm(H1-H0,2)/norm(H0)+0.5*err;

H0 = H1;

iter += 1;

if iter == maxit

print("GE loop hit maxit\n")

end

println("Iteration $iter. Difference: $err")

end

return(ge)

end;

15

Solution Solve for benchmark parameterization:

ge = ge_drip(ω,β,A,Q,α,Hq,L);

IRFs Get IRFs:

geirfs = irfs(ge,T = L)

M = [zeros(1,L-1) 0; Matrix(I,L-1,L-1) zeros(L-1,1)]; #shift matrix

dq = diagm(Hq)*geirfs.x[1,1,:]; #change in nominal demand

Pi = (I-M)*geirfs.a[1,1,:]; #inflation

y = inv(I-M)*(dq-Pi); #output

using Plots, LaTeXStrings; pyplot();

p1 = plot(1:L,[dq,Pi],

label = [L"Agg. Demand Growth (Δq)" L"Inflation (π)"]);

p2 = plot(1:L,y,

label = L"Output (y)");

plot(p1,p2,

layout = (1,2),

xlim = (1,20),

lw = 3,

legend = :topright,

legendfont = font(12),

tickfont = font(12),

size = (900,370),

framestyle = :box)

16

2.3 Replication of Maćkowiak and Wiederholt (2009)

This example replicates Maćkowiak and Wiederholt (2009) (henceforth MW) using the DRIPs
package.

2.3.1 Setup

The problem in MW is

min
{∆̂i,t,ẑi,t}

E
[
(∆t − ∆̂i,t)

2]+(π̂14

π̂11

)
︸ ︷︷ ︸
≡ξ

2

E
[
(zi,t − ẑi,t)

2]
 ,

s.t. I({∆t}; {∆̂i,t}) + I({zi,t}; {ẑi,t}) ≤ κ,

{∆t, ∆̂i,t} ⊥ {zi,t, ẑi,t}

where

∆t ≡ pt +

(
|π̂13|
|π̂11|

)
︸ ︷︷ ︸
≡1−α

(qt − pt)

pt =
∫ 1

0
∆̂i,tdi

qt = ρqt−1 + νt, νq,t ∼ N (0, σ2
q)

zi,t = ρzi,t−1 + νz,t, νz,t ∼ N (0, σ2
z)

17

2.3.2 Mapping the Problem to a DRIP

There are a few ways of translating the problem above to a Drip structure; however, the most
efficient way, due to the independence assumption, is to write it as the sum of two DRIPs: one
that solves the attention problem for the idiosyncratic shock, and one that solves the attention
problem for the aggregate shock which also has endogenous feedback.

Moreover, since the problem above has a fixed capacity, instead of a fixed cost of attention (ω) as
in DRIPs pacakge, we need to iterate over ω’s to find the one that corresponds with κ.

2.3.3 Initialization

Include the package:

using DRIPs;

Assign parameters:

ρ = 0.95;

σq = 0.01;

σz = 11.8*σq;

κ = 3;

ξ = 1;

α = 1 - 0.15;

Primitives of Drip:

using LinearAlgebra;

L = 21; # length of trunction

MW truncate the state space with linear irfs of length 20

A = [zeros(1,L);[Matrix(I,L-1,L-1);zeros(1,L-1)]’];

Qq = zeros(L,1); Qq[1]=σq;

Qz = zeros(L,1); Qz[1]=σz;

H = zeros(L,1); H[1:21] = Array(1:-1/20:0);

2.3.4 Functions

We start with a function that solves the aggregate problem with feedback for a given ω.

Solving for the fixed point given ω:

18

function agg_drip(ω,A,Qq, #primitives of drip except for H

α, #strategic complementarity

H; #state space rep. of q

β = 1, #optional: discount factor

H0 = H, #optional: initial guess for HΔ

maxit = 10000, #optional: max number of iterations for GE code

tol = 1e-4, #optional: tolerance for iterations

w = 1) #optional: update weight for RI

errmin= 1;

err = 1;

iter = 0;

L = length(H);

while (err > tol) & (iter < maxit)

if iter == 0

global agg = Drip(ω,β,A,Qq,H0;w=w);

else

global agg = Drip(ω,β,A,Qq,H0;Ω0=agg.ss.Ω,Σ0=agg.ss.Σ_1,w=w);

end

XFUN(jj) = ((I-agg.ss.K*agg.ss.Y’)*agg.A)^jj *

(agg.ss.K*agg.ss.Y’) * (agg.A’)^jj

X = DRIPs.infinitesum(XFUN; maxit=200, start = 0);

XpFUN(jj) = α^jj * X^(jj)

Xp = DRIPs.infinitesum(XpFUN; maxit=200, start = 0);

H1 = (1-α)*Xp’*H;

err= 0.5*norm(H1-H0,2)/norm(H0)+0.5*err;

perturb the initial guess if solution is the zero capacity one

if DRIPs.capacity(agg) < 1e-2

H0 = H0+rand(L).*(H-H0);

else # store the solution if it has positive capacity

H0 = H1;

if err < errmin

global aggmin = agg;

errmin = err;

end

end

iter += 1;

end

return(aggmin, errmin)

end;

19

Now we need a function that iterates over ω’s to find the one that corresponds to a given capacity
for the MW problem.

Solving for the optimal ω:

using Printf;

function MW(κ,α,A,Qq,Qz,Hq,Hz; #primitives of MW problem

ω = σq^2, #optional: initial guess for ω

tol = 1e-3, #optional: tolerance for κ

maxit = 10000) #optional: max iterations

ωs = [ω; 2*ω];

caps = [];

iter = 0;

err = 1;

it = 0;

while (err > tol) & (iter < maxit)

agg, errtemp = agg_drip(ω,A,Qq,α,H; H0 = rand(L),maxit=20,w=0.95);

idi = Drip(ω,1,A,Qz,H,w = 0.9) ;

cap = DRIPs.capacity(agg, unit="bit")+DRIPs.capacity(idi, unit="bit");

x = ω/σq^2;

@printf("ω = %.2fσq² for κ = %.2f \n",x,cap)

push!(caps,cap);

if it == 0

ω = ωs[end];

else

slope = (caps[end]-caps[end-1])/(ωs[end]-ωs[end-1]);

ω = ω + (κ-caps[end])/slope;

push!(ωs,ω);

end

err = abs(caps[end] - κ)/κ;

it += 1;

end

return(ω);

end;

2.3.5 Figures

Start with the benchmark calibration:

20

ω = MW(3,α,A,Qq,Qz,H,H);

agg, err = agg_drip(ω,A,Qq,α,H; H0 = rand(L), maxit = 500, w = 0.95);

idi = Drip(ω,1,A,Qz,H,w = 0.9);

@printf("Agg. Capacity = %.2f bits, Idio. Capacity = %.2f bits",

DRIPs.capacity(agg),DRIPs.capacity(idi));

iirfs = irfs(idi, T = L)

airfs = irfs(agg, T = L)

using Plots, LaTeXStrings; pyplot();

p1 = plot([iirfs.a[1,1,:],σz*H],

label = ["Perfect information" "Rational inattention"],

marker = [:square :circle],

color = [:gray25 :black],

markercolor = [false :black],

markerstrokecolor = [:gray25 :black],

markersize = [7 3],

xlabel = "Periods",

ylabel = "Impulse responses to shocks \n of one standard deviation");

p2 = plot([σq*H,airfs.a[1,1,1:end],σq*agg.H],

label = ["Perfect information" "Rational inattention"

L"Δ at the fixed point w/ RI"],

marker = [:circle :square :utriangle],

color = [:black :gray25 :gray50],

markercolor = [:black false false] ,

markerstrokecolor = [:black :gray25 :gray50],

markersize = [3 7 7],

xlabel = "Periods",

ylabel = "Impulse responses to shocks \n of one standard deviation")

plot(p1,p2,

layout = (2,1),

xlim = (0,L+1),

lw = 1,

legend = :topright,

legendfont = font(12),

tickfont = font(12),

size = (1000,550),

xticks = 1:2:21,

framestyle = :box)

21

For α = 0.7:

ω_α7 = MW(3,0.7,A,Qq,Qz,H,H);

agg_α7, err = agg_drip(ω_α7,A,Qq,0.7,H; H0 = rand(L), maxit = 100, w = 0.95);

idi_α7 = Drip(ω_α7,1,A,Qz,H,w = 0.9);

@printf("Agg. Capacity = %.2f bits, Idio. Capacity = %.2f bits",

DRIPs.capacity(agg_α7),DRIPs.capacity(idi_α7));

For α = 0:

ω_α0 = MW(3,0,A,Qq,Qz,H,H);

agg_α0, err = agg_drip(ω_α0,A,Qq,0,H; H0 = rand(L), maxit = 100, w = 0.95);

idi_α0 = Drip(ω_α0,1,A,Qz,H,w = 0.9);

@printf("Agg. Capacity = %.2f bits, Idio. Capacity = %.2f bits",

DRIPs.capacity(agg_α0),DRIPs.capacity(idi_α0));

22

Plot IRFs:

airfs_α7 = irfs(agg_α7, T = L);

airfs_α0 = irfs(agg_α0, T = L);

plot(1:L,0.75*[σq*H,airfs.a[1,1,:],airfs_α7.a[1,1,:],airfs_α0.a[1,1,:]],

label = ["Perfect information"

L"Rational inattention, benchmark economy, $\alpha = 0.85$"

L"Lower degree of real rigidity, $\alpha = 0.7$"

L"Lower degree of real rigidity, $\alpha = 0$"],

marker = [:circle :square :x :circle],

color = [:black :gray20 :gray40 :gray60],

markercolor = [:black false :gray40 false],

markerstrokecolor = [:black :gray20 :gray40 :gray60],

markersize = [3 7 7 7],

xlim = (0,L+1),

lw = 1,

xticks = 1:2:21,

legend = :topright,

legendfont = font(11),

tickfont = font(11),

size = (1000,275),

ylim = (0,σq),

framestyle = :box,

xlabel = "Periods",

ylabel = "Impulse responses to shocks \n of one standard deviation")

23

For κ = 4:

ω_κ4 = MW(4,α,A,Qq,Qz,H,H);

agg_κ4, err = agg_drip(ω_κ4,A,Qq,α,H; H0 = rand(L), maxit = 500, w = 0.95)

idi_κ4 = Drip(ω_κ4,1,A,Qz,H,w = 0.9)

@printf("Agg. Capacity = %.2f bits, Idio. Capacity = %.2f bits",

DRIPs.capacity(agg_κ4),DRIPs.capacity(idi_κ4));

For κ = 5:

ω_κ5 = MW(5,α,A,Qq,Qz,H,H; ω = 0.1*σq^2);

agg_κ5, err = agg_drip(ω_κ5,A,Qq,α,H; H0 = rand(L), maxit = 500, w = 0.95)

idi_κ5 = Drip(ω_κ5,1,A,Qz,H,w = 0.9)

@printf("Agg. Capacity = %.2f bits, Idio. Capacity = %.2f bits",

DRIPs.capacity(agg_κ5),DRIPs.capacity(idi_κ5));

24

Plot IRFs:

airfs_κ4 = irfs(agg_κ4, T = L);

airfs_κ5 = irfs(agg_κ5, T = L);

plot(1:L,0.75*[σq*H,airfs.a[1,1,:],airfs_κ4.a[1,1,:],airfs_κ5.a[1,1,:]],

label = ["Perfect information"

L"Rational inattention, benchmark economy, $\kappa = 3$"

L"Rational inattention $\kappa = 4$"

L"Rational inattention $\kappa = 5$"],

marker = [:circle :square :x :circle],

color = [:black :gray20 :gray40 :gray60],

markercolor = [:black false :gray40 false],

markerstrokecolor = [:black :gray20 :gray40 :gray60],

markersize = [3 7 7 7],

xlim = (0,L+1),

lw = 1,

xticks = 1:2:21,

legend = :topright,

legendfont = font(11),

tickfont = font(11),

size = (1000,275),

ylim = (0,σq),

framestyle = :box,

xlabel = "Periods",

ylabel = "Impulse responses to shocks \n of one standard deviation")

2.4 Replication of Sims (2010)

This example replicates Sims (2010) from the Handbook of Monetary Economics using the DRIPs

package.

25

2.4.1 Setup

The problem in Sims (2010), as it appears on page 21, with slight change of notation,

min
{Σt|t�0}t≥0

E0

[
∞

∑
t=0

βt

(
tr(Σt|tHH′) + ω log

(
|Σt|t−1|
|Σt|t|

))]
s.t. Σt+1|t = AΣt|tA

′ + QQ′

Σt|t−1 − Σt|t positive semi-definite

where

H =

[
1
1

]
, A =

[
0.95 0

0 0.4

]
, Q =

[√
0.0975 0

0
√

0.86

]

We have renamed the parameters so that the problem directly maps to a DRIP Otherwise, the
problem is the same.

2.4.2 Initialization

Include the package:

using DRIPs;

Set parameters:

β = 0.9;

ω = 1.0;

A = [0.95 0.0; 0.0 0.4];

Q = [0.0975^0.5 0.0; 0.0 0.86^0.5];

H = [1.0; 1.0];

2.4.3 Solution

Benchmark Parameterization Solve and display the optimal posterior covariance matrix:

sol_bp = Drip(ω,β,A,Q,H);

sol_bp.ss.Σ_p

2×2 Array{Float64,2}:

0.359213 -0.177025

-0.177025 0.794584

26

Lower Cost of Attention: ω = 0.1 Solve and display the optimal posterior covariance ma-
trix:

sol_lω = Drip(0.1,β,A,Q,H);

sol_lω.ss.Σ_p

2×2 Array{Float64,2}:

0.319919 -0.304142

-0.304142 0.386163

Different Discount Factors: β ∈ 0, 1 Solve the model for β = 0 and β = 1 to compare with the
benchmark value of β = 0.9:

β = 0

sol_lβ = Drip(ω,0,A,Q,H);

sol_lβ.ss.Σ_p

2×2 Array{Float64,2}:

0.495403 -0.152171

-0.152171 0.808939

β = 1

sol_hβ = Drip(ω,1,A,Q,H);

sol_hβ.ss.Σ_p

2×2 Array{Float64,2}:

0.337666 -0.178019

-0.178019 0.799701

2.4.4 IRFs

Benchmark Parameterization Get the IRFs:

T = 25;

irfs_bp = irfs(sol_bp,T = T);

Plot the IRFs:

27

using Plots, LaTeXStrings; pyplot();

p1 = plot(1:T, [irfs_bp.x[1,1,:], irfs_bp.a[1,1,:]],

title = L"IRFs to Slow-Moving Shock ($\rho = 0.95$)",

label = ["Shock" "Price"],

color = [:darkgray :black],

marker = [:circle :square],

markerstrokecolor = :match,

markercolor = false, markersize = 6)

p2 = plot(1:T, [irfs_bp.x[2,2,:], irfs_bp.a[1,2,:]],

title = L"IRFs to Fast-Moving Shock ($\rho = 0.4$)",

label = ["Shock" "Price"],

color = [:darkgray :black],

marker = [:circle :square],

markerstrokecolor = :match,

markercolor = false, markersize = 6)

p = plot(p1,p2, layout = (2,1),

xlabel = "Time", lw = 2,

xticks = (1:2:T), xlim = (0,T+1),

fontfamily = "serif",

legend = :topright,

legendfont = font(12), tickfont = font(12),

size = (900,550),

framestyle = :box)

28

Lower Cost of Attention (ω = 0.1) Get the IRFs:

T = 25; #length of IRFs

irfs_lω = irfs(sol_lω,T = T);

Plot the IRFs:

p1 = plot(1:T, [irfs_lω.x[1,1,:], irfs_lω.a[1,1,:]],

title = L"IRFs to Slow-Moving Shock ($\rho = 0.95$)",

label = ["Shock" "Price"],

color = [:darkgray :black], marker = [:circle :square],

markerstrokecolor = :match, markercolor = false, markersize = 6)

p2 = plot(1:T, [irfs_lω.x[2,2,:], irfs_lω.a[1,2,:]],

title = L"IRFs to Fast-Moving Shock ($\rho = 0.4$)",

label = ["Shock" "Price"],

color = [:darkgray :black], marker = [:circle :square],

markerstrokecolor = :match, markercolor = false, markersize = 6)

p = plot(p1,p2, layout = (2,1),

xlabel = "Time", lw = 2,

xticks = (1:2:T), xlim = (0,T+1),

fontfamily = "serif", legend = :topright,

legendfont = font(12), tickfont = font(12),

size = (900,550), framestyle = :box)

29

Other Discount Factors (β ∈ 0, 1) Get the IRFs:

T = 25; #length of IRFs

irfs_lβ = irfs(sol_lβ,T = T);

irfs_hβ = irfs(sol_hβ,T = T);

Plot the IRFs:

p1 = plot(1:T, [irfs_bp.x[1,1,:],irfs_hβ.a[1,1,:], irfs_lβ.a[1,1,:]],

title = L"IRFs to Slow-Moving Shock ($\rho = 0.95$)",

label = ["Shock" L"Price ($\beta=1$)" L"Price ($\beta=0$)"],

color = [:darkgray :black :gray50],

marker = [:circle :square :utriangle],

markercolor = false, markerstrokecolor = :match, markersize = 6)

p2 = plot(1:T, [irfs_bp.x[2,2,:],irfs_hβ.a[1,2,:], irfs_lβ.a[1,2,:]],

title = L"IRFs to Fast-Moving Shock ($\rho = 0.4$)",

label = ["Shock" L"Priceblack ($\beta=1$)" L"Price ($\beta=0$)"],

color = [:darkgray :black :gray50],

marker = [:circle :square :utriangle],

markercolor = false, markerstrokecolor = :match, markersize = 6)

p = plot(p1,p2, layout = (2,1), xlabel = "Time", lw = 2,

xticks = (1:2:T), xlim = (0,T+1), fontfamily = "serif",

legendfont = font(12), legend = :topright, tickfont = font(12),

size = (900,550), framestyle = :box)

30

2.4.5 Extensions

Transition Dynamics of Attention In this section, we solve for the transition dynamics of the
optimal posterior covariance matrix starting from an initial prior that is different from the steady
state prior.

For instance let us consider a case where the firm is at the steady state of the rational inattention
problem at time 0, with prior covariance matrix Σ̄−1, and it receives a one time treatment with a
perfectly informative signal about its optimal price:

s0 = H′~x0

Solve for the transition dynamics The function Trip solves for the transition dynamics auto-
matically given the initial signal. Start by initializing the initial signal:

s0 = DRIPs.Signal(H,0.0);

Solve for the transition dynamics given s0:

Tss = 15; # guess for time until convergence

bp_trip = Trip(sol_bp, s0; T = Tss);

Plot Transition Path of Eigenvalues Plot the marginal values of information. In this problem the
state is two dimensional. At any time, for every orthogonalized dimension, the agent weighs the
marginal value of acquiring information in that dimension against the marginal cost of attention
which is the parameter ω.The number of signals that the agent acquires at any time is the number
of marginal values that are larger than ω.

p = plot(0:Tss-1,[bp_trip.Ds[1,1:Tss],

bp_trip.Ds[2,1:Tss],bp_trip.p.ω*ones(Tss,1)],

label = ["Low marginal value dim." "High marginal value dim."

"Marginal cost of attention"],

title = "Marginal Value of Information",

size = (900,275), xlabel = "Time",

color = [:darkgray :black :black], line = [:solid :solid :dash],

marker = [:circle :square :none], markercolor = false,

markersize = 6, markerstrokecolor = :match,

xlim = (-1,Tss), xticks = 0:2:Tss-1,

legend = :outertopright, fontfamily = "serif",

framestyle = :box)

31

Impulse Response Functions with Information Treatment Get the IRFs in the transition path
after treatment:

T = 30;

tirfs_bp = irfs(sol_bp,s0,T = T); # irfs with treatment

irfs_bp = irfs(sol_bp,T = T); # irfs in the Ss (without treatment)

Plot IRFs:

p1 = plot(1:T, [irfs_bp.x[1,1,:], tirfs_bp.a[1,1,:], irfs_bp.a[1,1,:]],

title = L"IRFs to Slow-Moving Shock ($\rho = 0.95$)",

label = ["Shock" "Price (w/ treatment)" "Price (w/o treatment)"],

color = [:darkgray :black :gray80],

marker = [:circle :square :utriangle],

markercolor = false, markerstrokecolor = :match, markersize = 6)

p2 = plot(1:T, [tirfs_bp.x[2,2,:], tirfs_bp.a[1,2,:], irfs_bp.a[1,2,:]],

title = L"IRFs to Fast-Moving Shock ($\rho = 0.4$)",

label = ["Shock" "Price (w/ treatment)" "Price (w/o treatment)"],

color = [:darkgray :black :gray80],

marker = [:circle :square :utriangle],

markercolor = false, markerstrokecolor = :match, markersize = 6)

p = plot(p1,p2, layout = (2,1),

xlabel = "Time", lw = 2,

xticks = (1:2:T), xlim = (0,T+1),

fontfamily = "serif",

legend = :topright, legendfont = font(12),

tickfont = font(12),size = (900,550),

framestyle = :box)

32

2.5 Replication of Maćkowiak et al. (2018)

This example replicates Maćkowiak et al. (2018) from the Handbook of Monetary Economics using
the DRIPs package.

2.5.1 Ex. 1: AR(2) Process

In this example, authors assume that the optimal action follows an AR(2) process,

xt = φ1xt−1 + φ2xt−2 + θ0εt

Then, we can write a state-space form as:[
xt

xt−1

]
=

[
φ1 φ2

1 0

]
︸ ︷︷ ︸

A

[
xt−1

xt−2

]
+

[
θ0

0

]
︸ ︷︷ ︸

Q

εt

We now characterize the optimal signal, St = h1Xt + h2Xt−1 + ψt, as a function of φ2 and the
capacity for information processing (κ).

Include the package:

using DRIPs, LinearAlgebra;

33

Assign value to deep parameters and define the structure of the problem:

β = 1.0 ; # Time preference

θ0 = 1.0 ;

p2_seq = 0:0.02:0.9 ; # sequence of values for the AR(2) parameter

n_p = length(p2_seq) ;

κ_seq = 0.008:0.01:3.5 ; # sequence of values for the information capacity

n_κ = length(κ_seq) ;

H = [1; 0] ;

Q = [θ0 ; 0] ;

Replication of Figures 2 and 3 Solve for different values of φ2:

κ = 0.2 ; # fix κ for this exercise so we can vary p2

h1 = zeros(n_p,1) ;

h2 = zeros(n_p,1) ;

h2norm = zeros(n_p,1) ;

for i in 1:n_p

p2 = p2_seq[i] ;

p1 = 0.9 - p2 ;

A = [p1 p2 ; 1.0 0.0] ;

ex1a = Drip(κ,β,A,Q,H,fcap=true);

h1[i] = ex1a.ss.Y[1]

h2[i] = ex1a.ss.Y[2]

h2norm[i] = ex1a.ss.Y[2]/ex1a.ss.Y[1] # normalize the first signal weight h1

end

Here is the replication of Figure 2 in Maćkowiak et al. (2018):

34

using Printf, LaTeXStrings, Plots; pyplot();

plot(p2_seq,h2norm[:,1],

title = L"Optimal Signal, AR(2) processes with

$\phi_1+\phi_2 = 0.9$, κ constant.",

xlabel = L"ϕ_2",

ylabel = L"h_2(with h_1 normalized to 1)",

label = L"Signal Weight on X_{t-1}, h_2 (h_1 normalized to 1)",

legend = :topleft, lw = 2, color = :black,

xlim = (0,0.9), xticks = (0:0.1:0.9),

titlefont = font(10), legendfont = font(7), tickfont = font(7),

size = (650,300), grid = :off, framestyle = :box)

Now, we solve for the signal weight and standard deviation of noise, for different values of κ

35

p2 = 0.4 ; # fix p2 in this exercise so we can vary κ

p1 = 0.99 - p2 ;

A = [p1 p2 ; 1.0 0.0] ;

ω_sol = zeros(n_κ,1) ;

σz_sol = zeros(n_κ,1) ;

for i in 1:n_κ

κ = κ_seq[i] ;

ex1b = Drip(κ,β,A,Q,H,fcap=true);

h1temp = ex1b.ss.Y[1]

h2temp = ex1b.ss.Y[2]

ω_sol[i] = 1.0 - (h2temp/h1temp)/(p2 + (1.0-p1)*(h2temp/h1temp)) ;

ρ = (ω_sol[i] + (1.0-ω_sol[i])*p1)/h1temp

σz_sol[i] = ρ*ex1b.ss.Σ_z[1,1] ;

end

Here is the replication of Figure 3 in Maćkowiak et al. (2018):

a = fill(NaN, n_κ, 1)

plot(κ_seq,[ω_sol[:,1] a],

xlabel = L"κ",

label = [L"Signal weight on X_{t}, ω (left axis)"

L"St. dev. of noise σ_{ψ} (right axis)"],

title = L"Optimal signal as function of κ, AR(2) example.",

linestyle = [:solid :dash], color = [:black :gray40],

xticks = (0:1:3), xlim = (-0.02,3.02),

yticks = (0:0.5:1), ylim = (-0.01,1.01),

lw = 2, grid = :off, legend = :right,

titlefont = font(10), legendfont = font(8), tickfont = font(8),

framestyle = :box)

plot!(twinx(),κ_seq,σz_sol[:,1],

linestyle = :dash, color = :gray40,

label = "", xlim = (-0.02,3.02),

xticks = false, yticks = (0:6:12),

ylim = (-0.12,12.12),

lw = 2, tickfont = font(7),

size = (650,300), grid = :off, framestyle = :box)

36

2.5.2 Ex. 2: AR(3) and ARMA(2,1) Processes

Here, we replicate the AR(3) and ARMA(2,1) examples in Mackowiak, Matejka and Wiederholt
(2018). Using a similar method to the AR(2) case, we can write the law of motion of optimal
actions as a state-space form.

The AR(3) Example:

β = 1.0 ;

θ0 = 1.0 ;

κ = 10.8 ;

p1 = 1.5 ;

p2 = -0.9 ;

p3 = 0.1 ;

A = [p1 p2 p3 ; 1 0 0 ; 0 1 0] ;

Q = [θ0 ; 0; 0] ;

H = [1 ; 0; 0] ;

ex2a = Drip(κ,β,A,Q,H;tol=1e-8);

To be consistent with MMW(2018), scale the signal vector so that the weight on the first element
is one (h1 = 1):

37

h1 = 1;

h2 = ex2a.ss.Y[2]/ex2a.ss.Y[1]

h3 = ex2a.ss.Y[3]/ex2a.ss.Y[1]

Print the weights:

s = @sprintf(" h1 = %5.3f, h2 = %5.3f, h3 = %5.3f", h1, h2, h3) ;

println(s) ;

h1 = 1.000, h2 = -0.475, h3 = 0.053

Since we scaled the signal vector, we also need to adjust the noise in the signal accordingly:

AdjNoise = 3.879

AdjPara_ex2a= AdjNoise*ex2a.ss.Y[1]

Calculate IRFs:

irf_ex2a = irfs(ex2a; T=30) ;

xirf_ex2a = irf_ex2a.x[1,1,:]

xhatirf_ex2a= irf_ex2a.x_hat[1,1,:]

x = zeros(3,30);

xhat_noise_ex2a = zeros(3,30);

for ii in 1:30

if ii==1

xhat_noise_ex2a[:,ii] = ex2a.ss.K;

else

xhat_noise_ex2a[:,ii] = A*xhat_noise_ex2a[:,ii-1] +

(ex2a.ss.K*ex2a.ss.Y’)*(x[:,ii] -

A*xhat_noise_ex2a[:,ii-1]);

end

end

xhat_noise_ex2a = xhat_noise_ex2a[1,:]*AdjPara_ex2a ;

38

The ARMA(2,1) Example:

β = 1.0 ;

θ0 = 0.5 ;

θ1 = -0.1 ;

κ = 1.79 ;

p1 = 1.3 ;

p2 = -0.4 ;

A = [p1 p2 θ1 ; 1.0 0.0 0.0 ; 0.0 0.0 0.0] ;

Q = [θ0 ; 0.0; 1.0] ;

H = [1.0; 0.0; 0.0] ;

ex2b = Drip(κ,β,A,Q,H,tol=1e-8);

To be consistent with MMW(2018), scale the signal vector so that the weight on the first element
is one (h1 = 1):

h1 = 1;

h2 = ex2b.ss.Y[2]/ex2b.ss.Y[1]

h3 = ex2b.ss.Y[3]/ex2b.ss.Y[1]

Print the weights:

s = @sprintf(" h1 = %5.3f, h2 = %5.3f, h3 = %5.3f", h1, h2, h3) ;

println(s) ;

h1 = 1.000, h2 = -0.275, h3 = -0.069

Since we scaled the signal vector, we also need to adjust the noise in the signal accordingly:

AdjNoise = 1.349

AdjPara_ex2b= AdjNoise*ex2b.ss.Y[1]

Calculate IRFs:

39

irf_ex2b = irfs(ex2b; T=30) ;

xirf_ex2b = irf_ex2b.x[1,1,:]

xhatirf_ex2b = irf_ex2b.x_hat[1,1,:]

x = zeros(3,30);

xhat_noise_ex2b = zeros(3,30);

for ii in 1:30

if ii==1

xhat_noise_ex2b[:,ii] = ex2b.ss.K;

else

xhat_noise_ex2b[:,ii] = A*xhat_noise_ex2b[:,ii-1] +

(ex2b.ss.K*ex2b.ss.Y’)*(x[:,ii] -

A*xhat_noise_ex2b[:,ii-1]);

end

end

xhat_noise_ex2b = xhat_noise_ex2b[1,:]*AdjPara_ex2b ;

Replication of Figure 5 in Maćkowiak et al. (2018):

p1 = plot(1:30,[xirf_ex2a xhatirf_ex2a xhat_noise_ex2a],

title = "AR(3) example, optimal signal with i.i.d. noise",

color = [:black :gray20 :gray40], ylim = (-0.82,1.62),

yticks = (-0.8:0.4:1.6), markerstrokecolor = [:black :gray20 :gray40])

p2 = plot(1:30,[xirf_ex2b xhatirf_ex2b xhat_noise_ex2b],

title = "ARMA(2,1) example, optimal signal with i.i.d. noise",

color = [:black :gray20 :gray40],ylim = (-0.05,0.65),

yticks = (0:0.1:0.6), markerstrokecolor = [:black :gray20 :gray40])

Plots.plot(p1,p2, layout = (1,2),

label = [L"X_{t} to ε_t"

L"$Y_t=E[X_t|I_t]$ to ε_t"

L"$Y_t=E[X_t|I_t]$ to ψ_t"],

marker = [:circle :circle :star8], markercolor = [:black :false :gray40],

legend = :topright, xticks = (0:2:30), markersize = [3 5 5],

xlim = (0,30), lw = 1.5, legendfont = font(8), guidefont=font(9),

size = (700,300), titlefont=font(9), tickfont=font(8),

grid = :off, framestyle = :box)

40

2.5.3 Ex. 3: Price-setting with Rational Inattention

We now replicate the price-setting exercise in Maćkowiak et al. (2018) and its comparison with
the Woodford (2003) example. This corresponds to Figure (6) in their paper. The model structure
is identifcal to our Example in Section 2.1 (without strategic complementarity) and Example in
Section 2.2 (with strategic complementarity).

The Case with No Strategic Complementarity:

ρ = 0.9; #persistence of money growth

σ_u = 0.1; #std. deviation of shocks to money growth

κ = 0.62;

β = 1.0;

A = [1 ρ; 0 ρ];

Q = σ_u*[1; 1];

H = [1; 0];

ω = 0.1;

ex_opt = Drip(κ,β,A,Q,H,fcap=true);

capa_opt = DRIPs.capacity(ex_opt); #returns capacity utilized in bits

Calculate IRFs:

irfs_ex_opt = irfs(ex_opt, T = 12);

output_opt = (irfs_ex_opt.x[1,1,:] - irfs_ex_opt.a[1,1,:]) ;

output_opt = [0;output_opt] ;

Now, to compare with Woodford (2003), assume that firms observe a noisy signal, St = qt + ζt

41

where ζt is an idiosyncratic noise. We first define a function to solve the corresponding Kalman
filtering problem.

function K_filtering(A,Q,Ysignal,Σz,Σ0 ; maxit=10000,tol=1e-10,w=1)

err = 1

iter = 0

while (err > tol) & (iter < maxit)

global Knew = Σ0*Ysignal*inv(Ysignal’*Σ0*Ysignal .+ Σz)

global Σp_temp = Σ0 - Knew*Ysignal’*Σ0

global Σ1 = A*Σp_temp*A’ + Q*Q’

err = norm(Σ1 - Σ0,2)/norm(Σ0,2)

Σ0 = w*Σ1 + (1-w)*Σ0

#println("Iteration $iter. Difference: $err")

iter += 1

end

return(Knew,Σ0,Σp_temp)

end;

Now find the capacity utilized under Woodford’s formulation such that it yields the same infor-
mation flow as the optimal signal under ratinoal inattention.

42

Ywoodford = [1;0];

Σ1_init = ex_opt.ss.Σ_1;

Σz_new_b = 0.01;

Σz_new_u = 0.1;

Σz_new = (Σz_new_b+Σz_new_u)/2;

for i in 1:10000

(Knew,Σ1_new,Σp_temp) = K_filtering(A,Q,Ywoodford,Σz_new,Σ1_init;w=0.5);

capa_woodford = 0.5*log(det(Σ1_new)/det(Σp_temp))/log(2);

if capa_woodford > capa_opt

global Σz_new_b = Σz_new;

else

global Σz_new_u = Σz_new;

end

global Σz_new = (Σz_new_b+Σz_new_u)/2;

err = abs(capa_woodford - capa_opt);

if err < 1e-5

break;

end

end

Calculate impulse responses under Woodford’s formulation

e_k = 1;

x = zeros(2,12);

xhat= zeros(2,12);

a = zeros(2,12);

for ii in 1:12

if ii==1

x[:,ii] = Q*e_k;

xhat[:,ii] = (Knew*Ywoodford’)*(x[:,ii]);

else

x[:,ii] = A*x[:,ii-1];

xhat[:,ii] = A*xhat[:,ii-1]+(Knew*Ywoodford’)*(x[:,ii]-A*xhat[:,ii-1]);

end

a[:,ii] .= H’*xhat[:,ii];

end

output_woodford = (x[1,:] - a[1,:]);

output_woodford = [0;output_woodford];

43

The Case with Strategic Complementarity:

We now turn to the example with strategic complementarity. As in our Example in Section 2.2, we
first define a function to solve the fixed point with endogenous feedback.

function ge_drip(ω,β,A,Q, #primitives of drip except for H

α, #strategic complementarity

Hq, #state space rep. of Δq

L; #length of truncation

H0 = Hq, #optional: initial guess for H

maxit = 200, #optional: max number of iterations for GE

tol = 1e-4) #optional: tolerance for iterations

err = 1;

iter = 0;

M = [zeros(1,L-1) 0; Matrix(I,L-1,L-1) zeros(L-1,1)];

while (err > tol) & (iter < maxit)

if iter == 0

global ge = Drip(ω,β,A,Q,H0; w=0.9);

else

global ge = Drip(ω,β,A,Q,H0; Ω0=ge.ss.Ω, Σ0=ge.ss.Σ_1, maxit=100);

end

XFUN(jj) = ((I-ge.ss.K*ge.ss.Y’)*ge.A)^jj * (ge.ss.K*ge.ss.Y’) * (M’)^jj

X = DRIPs.infinitesum(XFUN; maxit=L, start = 0);

XpFUN(jj) = α^jj * X^(jj)

Xp = DRIPs.infinitesum(XpFUN; maxit=L, start = 0);

H1 = (1-α)*Xp’*Hq;

err= 0.5*norm(H1-H0,2)/norm(H0)+0.5*err;

H0 = H1;

iter += 1;

if iter == maxit

print("GE loop hit maxit\n")

elseif mod(iter,10) == 0

println("Iteration $iter. Difference: $err")

end

end

print(" Iteration Done.\n")

return(ge)

end;

Now, we solve for the optimal signal structure under rational inattention.

44

ρ = 0.9; #persistence of money growth

σ_u = 0.1; #std. deviation of shocks to money growth

α = 0.85; #degree of strategic complementarity

L = 40; #length of truncation

Hq = ρ.^(0:L-1); #state-space rep. of Δq

ω = 0.08;

β = 1 ;

A = [1 zeros(1,L-2) 0; Matrix(I,L-1,L-1) zeros(L-1,1)];

M = [zeros(1,L-1) 0; Matrix(I,L-1,L-1) zeros(L-1,1)]; # shift matrix

Q = [σ_u; zeros(L-1,1)];

ex_ge = ge_drip(ω,β,A,Q,α,Hq,L) ;

capa_ge = DRIPs.capacity(ge) ;

Calculate IRFs:

geirfs = irfs(ex_ge,T = L) ;

dq = diagm(Hq)*geirfs.x[1,1,:];

q = inv(I-M)*dq ;

output_ge_opt = q - geirfs.a[1,1,:] ;

output_ge_opt = [0;output_ge_opt] ;

Finally, to compare with the IRFs under Woodford (2003)’s specification, we find signal noise such
that it yields the same information flow as the optimal signal structure.

45

Ywoodford_ge = Hq

Σ1_init = ex_ge.ss.Σ_1

Σz_new_b = 0.05

Σz_new_u = 0.12

Σz_new = (Σz_new_b+Σz_new_u)/2

for i in 1:10000

(Knew,Σ1_new,Σp_temp) = K_filtering(A,Q,Ywoodford_ge,Σz_new,Σ1_init;w=0.5)

capa_woodford = 0.5*log(det(Σ1_new)/det(Σp_temp))/log(2)

if capa_woodford > capa_ge

global Σz_new_b = Σz_new

else

global Σz_new_u = Σz_new

end

global Σz_new = (Σz_new_b+Σz_new_u)/2

err = abs(capa_woodford - capa_ge)

if err < 1e-5

break

end

end

XFUN(jj) = ((I-Knew*Ywoodford_ge’)*A)^jj * (Knew*Ywoodford_ge’) * (M’)^jj

X = DRIPs.infinitesum(XFUN; maxit=L, start = 0);

XpFUN(jj) = α^jj * X^(jj)

Xp = DRIPs.infinitesum(XpFUN; maxit=L, start = 0);

H1 = (1-α)*Xp’*Hq;

Calculate impurse responses under Woodford’s signal

46

e_k = 1;

x = zeros(40,40);

xhat= zeros(40,40);

a = zeros(1,40);

for ii in 1:40

if ii==1

x[:,ii] = Q*e_k;

xhat[:,ii]= (Knew*Ywoodford_ge’)*(x[:,ii]);

else

x[:,ii] = A*x[:,ii-1];

xhat[:,ii]= A*xhat[:,ii-1]+(Knew*Ywoodford_ge’)*(x[:,ii]-A*xhat[:,ii-1]);

end

a[:,ii] .= H1’*xhat[:,ii];

end

dq = diagm(Hq)*x[1,:];

q = inv(I-M)*dq ;

output_ge_woodford = q - a[1,:] ;

output_ge_woodford = [0;output_ge_woodford] ;

We now have all the IRFs to replicate Figure 6 in Maćkowiak et al. (2018):

47

p1 = plot(0:12,[output_woodford output_opt],

title = L"The case of $\xi=1$",

color = [:black :gray40], markerstrokecolor = [:black :gray40],

ylim = (-0.003,0.053), ytick = (0:0.01:0.05))

p2 = plot(0:12,[output_ge_woodford[1:13] output_ge_opt[1:13]],

title = L"The case of $\xi=0.15$",

color = [:black :gray40], markerstrokecolor = [:black :gray40],

ylim = (-0.005,0.105), ytick = (0:0.02:0.1))

Plots.plot(p1,p2, layout = (2,1),

label = ["Woodford Model" "Model with optimal signals"],

legend = :topright,

marker = [:circle :star8], markersize = [5 5],

markercolor = [:false :gray40],

xlim = (0,12), xtick = (0:1:12),

xlabel = "Time", lw = 1.5,

legendfont = font(8), titlefont = font(10), guidefont = font(9),

tickfont = font(8), size = (700,400),

grid = :off, framestyle = :box)

48

2.5.4 Ex. 4: Business Cycle Model with News Shocks

In this section, we replicate the business cycle model with news shocks in Section 7 in Maćkowiak
et al. (2018).

Full-Information The techonology shock follows AR(1) process:

zt = ρzt−1 + σεt−k

and the total labor input is:

nt =
∫ 1

0
ni,tdi.

Under perfect information, the households chooses the utility-maximizing labor supply, all firms
choose the profit-maximizing labor input, and the labor market clearing condition is:

1− γ

ψ + γ
wt =

1
α
(zt − wt).

Then, the market clearing wages and the equilibrium labor input are:

wt =
1
α

1−γ
ψ+γ + 1

α

zt ≡ ξzt

nt =
1
α
(1− ξ)zt.

Rational Inattention Firms wants to keep track of their ideal price,

n∗t =
1
α

zt −
1
α

ψ + γ

1− γ
nt

where nt =
∫ 1

0 ni,tdi. Then, firm i’s choice depends on its information set at time t:

ni,t = Ei,t[n∗t].

Note that now the state space representation for n∗t is determined in the equilibrium. However, we
know that this is a Guassian process and by Wold’s theorem we can decompose it to its MA(∞)

representation:

n∗t = Φ(L)εt

where Φ(.) is a lag polynomial and εt is the shock to technology. Here, we have basically guessed
that the process for p∗i,t is determined uniquely by the history of monetary shocks which requires

49

that rational inattention errors of firms are orthogonal. Our objective is to find Φ(.).

Now, as in our Example in Section 2.2, we can represent the problem in a matrix notation.

Now, we solve for the optimal signal structure under rational inattention.

β = 1 ; # Time preference

γ = 1/3 ; # Inverse of intertemporal elasticity of substitution

ψ = 0 ; # Inverse of Frisch elasticity

α = 3/4 ; # Labor share in production function

θ = -1/α*(ψ+γ)/(1-γ) ;

ξ = θ/(θ-1) ;

ρ = 0.9 ; #persistence of technology shocks

σ = 1 ; #std. deviation of technology shocks

ω = 6.5 ; # Information cost

L = 40 ; #length of truncation

k = 8 ; #news horizon

M = [zeros(1,L-1) 0; Matrix(I,L-1,L-1) zeros(L-1,1)]; # shift matrix

Hz = ρ.^(0:L-1)

Hz = (M^k)*Hz

A = M ;

Q = [σ; zeros(L-1,1)] ;

Also, define a function that solves the GE problem and returns the solution in a Drip struc-
ture:

50

function ge_drip(ω,β,A,Q,α,θ, #primitives of drip except for H

Hz, #state space rep. of z

L; #length of truncation

w_out = 0.5,

H0 = Hz, #optional: initial guess for H

maxit = 200, #optional: max number of iterations for GE

tol = 1e-6) #optional: tolerance for iterations

err = 1;

iter = 0;

M = [zeros(1,L-1) 0; Matrix(I,L-1,L-1) zeros(L-1,1)];

eye = Matrix(I,L,L)

while (err > tol) & (iter < maxit)

if iter == 0

global ge = Drip(ω,β,A,Q,H0;w=0.5, tol=1e-8);

else

global ge = Drip(ω,β,A,Q,H0;w=0.9, tol=1e-8,

Ω0=ge.ss.Ω, Σ0=ge.ss.Σ_1, maxit=1000);

end

XFUN(jj) = ((eye-ge.ss.K*ge.ss.Y’)*ge.A)^jj*(ge.ss.K*ge.ss.Y’) * (M’)^jj

X = DRIPs.infinitesum(XFUN; maxit=L, start = 0);

H1 = (1/α)*Hz + θ*X’*H0 ;

err= 0.5*norm(H1-H0,2)/norm(H0)+0.5*err;

H0 = w_out*H1 + (1.0-w_out)*H0 ;

iter += 1;

if iter == maxit

print("GE loop hit maxit\n")

elseif mod(iter,10) == 0

println("Iteration $iter. Difference: $err")

end

end

print(" Iteration Done.\n")

return(ge)

end;

Solve the model:

ge = ge_drip(ω,β,A,Q,α,θ,Hz,L) ;

IRFs:

51

geirfs = irfs(ge,T = L);

profit_loss = sum((geirfs.x[1,1,:]/100 - geirfs.x_hat[1,1,:]/100).^2);

s = @sprintf("==: Profit loss from rational inattention = %6.5f", profit_loss);

println(s) ;

Replication of Figure 7 in Maćkowiak et al. (2018)

n_opt = geirfs.a[1,1,:] ; # Optimal labor input under rational inattention

n_fullinfo = σ*1/α*(1-ξ)*Hz ; # Optimal labor input under full information

plot(1:30,[n_fullinfo[1:30] n_opt[1:30]],

title = "The impulse response of labor input to a productivity shock.",

ylabel = "Percent",

label = ["Equilibrium under perfect information"

"Equilibirum when firms are subject to rational inattention"],

legend = :topright, color = [:black :gray40],

markerstrokecolor = [:black :gray40], markersize = [5 5],

marker = [:circle :star8], markercolor = [:false :gray40],

ylim = (-0.05,0.85), ytick = (0:0.1:0.8),

xlim = (0,30), xtick = (0:2:30), tickfont = font(8),

lw = 1.5, legendfont = font(8), titlefont = font(10),

guidefont = font(9), size = (650,400),

grid = :off, framestyle = :box)

52

2.6 Replication of the Quantitative Analysis in Afrouzi and Yang (2019)

This example replicates qunatitative analysis in Afrouzi and Yang (2019) using the DRIPs pack-
age.

2.6.1 Setup

Households Households are fully rational and maximize their life-time utilities:

max E
f
t

[
∞

∑
t=0

βt

(
C1−σ

t
1− σ

−
∫ 1

0 L1+ψ
i,t di

1 + ψ

)]

s.t.
∫

Pi,tCi,tdi + Bt ≤ Rt−1Bt−1 +
∫ 1

0
Wi,tLi,tdi + Πt, for all t

where

Ct =

(∫
C

θ−1
θ

i,t di
) θ

θ−1

.

Here Et f [·] is the full information rational expectation operator at time t. Since the main purpose
of this paper is to study the effects of nominal rigidity and rational inattention among firms, I
assume that the household is fully informed about all prices and wages. Bt is the demand for
nominal bond and Rt−1 is the nominal interest rate. Li,t is firm-specific labor supply of the house-
hold, Wi,t is the firm-specific nominal wage, and Πt is the aggregate profit from the firms. Ct is
the aggregator over the consumption for goods produced by firms. θ is the constant elasticity of
substitution across different firms.

Firms There is a measure one of firms, indexed by i, that operate in monopolistically competitive
markets. Firms take wages and demands for their goods as given, and choose their prices Pi,t

based on their information set, St
i , at that time. After setting their prices, firms hire labor from a

competitive labor market and produce the realized level of demand that their prices induce with
a production function,

Yi,t = AtLi,t,

where Li,t is firm i’s demand for labor. I assume that shocks to At are independently and iden-
tically distributed and the log of the productivity shock, ai,t ≡ log(At), follows a AR(1) pro-
cess:

at = ρaat−1 + εa,t, εa,t ∼ N(0, σ2
a).

53

Then, firm i’s nominal profit from sales of all goods at prices Pi,j,t
N
j=1 is given by

Πi,t(Pi,t, At, Wi,t, Pt, Yt) = (Pi,t −Wi,t At)

(
Pi,t

Pt

)−θ

Yt,

where Yt is the nominal aggregate demand.

At each period, firms optimally decide their prices and signals subject to costs of processing in-
formation. Firms are rationally inattentive in a sense that they choose their optimal information
set by taking into account the cost of obtaining and processing information. At the beginning of
period t, firm i wakes up with its initial information set, St−1

i . Then it chooses optimal signals, si,t,
from a set of available signals, S i, t, subject to the cost of information which is linear in Shannon’s
mutual information function. Denote ω as the marginal cost of information processing. Firm i
forms a new information set, St

i = St−1
i ∪ si, t, and sets its new prices, Pi,t, based on that.

The firm i chooses a set of signals to observe over time (si,t ∈ S i, t)t = 0∞ and a pricing strategy
that maps the set of its prices at t− 1 and its information set at t to its optimal price at any given
period, Pi,t : (St

i) → R where St
i = St−1

i ∪ si,t = S−1
i ∪ si,τ

t
τ=0 is the firm’s information set at time

t. Then, the firm i’s problem is to maximize the net present value of its life time profits given an
initial information set:

max
{si,t∈Si,t,Pi,t(St

i)}t≥0

E

[
∞

∑
t=0

βtΛt

{
Πi,t(Pi,t, At, Wi,t, Pt, Yt)−ωI(St

i ; (Aτ, Wi,τ, Pτ, Yτ)τ≤t|St−1
i)

} ∣∣∣∣∣S−1
i

]
s.t. St

i = St−1
i ∪ si,t

where Λt is the stochastic discount factor and I(St
i ; (Aτ, Wi,τ, Pτ, Yτ)τ≤t|St−1

i) is the Shannon’s mu-
tual information function.

Monetary Policy Monetary policy is specified as a standard Talor rule:

Rt = (Rt−1)
ρ

(
Πφπ

t

(
Yt

Yn
t

)φx
(

Yt

Yt−1

)φ∆y
)1−ρ

exp(ut)

where ut ∼ N(0, σ2
u) is the monetary policy shock.

54

2.6.2 A Three-Equation GE Rational Inattention Model

Our general equlibrium model is characterized by the following three equations with two stochas-
tic processes of technology (at) and monetary policy shocks (ut):

xt = E
f
t

[
xt+1 −

1
σ
(it − πt+1)

]
+ E

f
t [y

n
t+1]− yn

t

pi,t = Ei,t [pt + αxt]

it = ρit−1 + (1− ρ)
(
φππt + φxxt − φ∆y∆yt

)
+ ut

where Ei, t[·] is the firm i’s expectation operator conditional on her time t information set, xt =

yt − yn
t is the output gap, ytn = 1+ψ

σ+ψ at is the natural level of output, it is the nominal interest rate,

and α = σ+ψ
1+ψθ is the degree of strategic complementarity.

2.6.3 Matrix Representation

Firms wants to keep track of their ideal price, p∗i,t = pt + αxt. Notice that the state space rep-
resentation for p∗i,t is no longer exogenous and is determined in the equilibrium. However, we
know that this is a Guassian process and by Wold’s theorem we can decompose it to its MA(∞)

representation:

p∗i,t = Φa(L)εa,t + Φu(L)εu,t

where Φa(.) and Φu(.) are lag polynomials. Here, we have basically guessed that the process
for p∗i,t is determined uniquely by the history of monetary shocks which requires that rational
inattention errors of firms are orthogonal.

Since we cannot put MA(∞) processes in the computer and have to truncate them. However, we
know that for stationary processes we can arbitrarily get close to the true process by truncating
MA(∞) processes. Our problem here is that p∗i,t has a unit root and is not stationary. We can
bypass this issue by re-writing the state space in the following way:

p∗i,t = Φa(L)εa,t + φu(L)ε̃u,t, ε̃u,t = (1− L)−1εu,t =
∞

∑
j=0

εu,t−j

here ε̃u,t is the unit root of the process and basically we have differenced out the unit root from the
lag polynomial, and φu(L) = (1− L)Φu(L). Notice that since the original process was difference
stationary, differencing out the unit root means that φu(L) is now in `2, and the process can now
be approximated arbitrarily precisely with truncation.

For ease of notation, let zt = (εa,t, εu,t) and z̃t = (εa, t, ε̃u,t). For a length of truncation L, let
~xt′ ≡ (zt, zt− 1, . . . , zt− (L + 1)) ∈ R2L and ~xt′ ≡ (z̃t, z̃t− 1, . . . , z̃t− (L + 1)) ∈ R2L. Notice

55

that

~xt = (I−ΛM′)~xt

~xt = (I−ΛM′)−1~xt

where I is a 2× 2 identity matrix, Λ is a diagonal matrix where Λ(2i, 2i) = 1 and Λ(2i− 1, 2i− 1) =
0 for all i = 1, 2, · · · , L, and M is a shift matrix:

M =



0 0 · · · 0 0 0 0
0 0 · · · 0 0 0 0
1 0 · · · 0 0 0 0
0 1 · · · 0 0 0 0
...

...
. . .

...
...

...
...

0 0 · · · 1 0 0 0
0 0 · · · 0 1 0 0


Then, note that p∗i,t ≈ H′~xt where H ∈ R2L is the truncated matrix analog of the lag polynominal,
and is endogenous to the problem. Our objective is to find the general equilibrium H along with
the optimal information structure that it implies.

Moreover, note that

at = H′a~xt, H′a = (1, 0, ρa, 0, ρ2
a, 0, . . . , ρL−1

a , 0)

ut = H′u~xt, H′u = (0, 1, 0, 0, 0, 0, . . . , 0, 0)

We will solve for H by iterating over the problem. In particular, in iteration n ≥ 1, given the guess
H(n−1), we have the following state space representation for the firm’s problem

~xt =



0 0 0 · · · 0 0 0 0
0 1 0 · · · 0 0 0 0
1 0 0 · · · 0 0 0 0
0 1 0 · · · 0 0 0 0
0 0 1 · · · 0 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 · · · 1 0 0 0
0 0 0 · · · 0 1 0 0


︸ ︷︷ ︸

A

~xt−1 +



1 0
0 1
0 0
...

...
0 0


︸ ︷︷ ︸

Q

zt,

p∗i,t = H′(n−1)~xt

56

Now, note that

pt =
∫ 1

0
pi,tdi = H′(n−1)

∫ 1

0
Ei,t[~xt]di

= H′(n−1)

∞

∑
j=0

[(I−K(n)Y
′
(n))A]jK(n)Y

′
(n)~xt−j

≈ H′(n−1)

[
∞

∑
j=0

[(I−K(n)Y
′
(n))A]jK(n)Y

′
(n)M

′j
]

︸ ︷︷ ︸
≡X(n)

~xt

= H′(n−1)X(n)~xt = H′p~xt

Let xt = Hx′~xt, it = Hi′~xt, and πt = Hπ′~xt = H′p(I−ΛM′)−1(I−M′)~xt. Then from the house-
holds Euler equation, we have:

xt = E
f
t

[
xt+1 −

1
σ
(it − πt+1)

]
+ E

f
t [y

n
t+1]− yn

t

=⇒ Hi = σ
(
M′ − I

)
Hx +

σ(1 + ψ)

σ + ψ

(
M′ − I

)
Ha + M′Hπ

Also, the Talyor rule gives:

it = ρ1it−1 + ρ2it−2 + (1− ρ1 − ρ2)
(
φππt + φxxt + φ∆y (yt − yt−1)

)
+ ut

=⇒
(
I− ρ1M− ρ2M2)Hi = (1− ρ1 − ρ2) φπHπ + (1− ρ1 − ρ2) φxHx

+ (1− ρ1 − ρ2) φ∆y (I−M)

(
Hx +

1 + ψ

σ + ψ
Ha

)
+ Hu

These give us Hx and Hi and we update new H(n) using:

H(n) = Hp + α(I−MΛ′)Hx

We iterate until convergence of H(n).

2.6.4 Replication Codes

Initialize:

using DRIPs;

using BenchmarkTools, LinearAlgebra, GLM, Statistics, Suppressor, Printf;

using PyPlot; rc("text", usetex="True") ;

rc("font",family="serif",serif=:"Palatino") ;

using Plots, LaTeXStrings; pyplot() ;

57

Set parameters:

struct param

β; σ; ψ; θ; α; # Deep parameters

psi_π; psi_x; psi_dy; ρ; # Monetary policy parameters

ρa; ρu; σa; σu; # Shock paramters

end

Assign model parameters:

σ = 2.5 ; #Risk aversion

β = 0.99 ; #Time discount

ψ = 2.5 ; #Inverse of Frisch elasticity of labor supply

θ = 10 ; #Elasticity of substitution across firms

α = (σ+ψ)/(1+ψ*θ) ; #Strategic complementarity (1-α)

Assign monetary policy parameters: post-Volcker

psi_π = 2.028 ; #Taylor rule response to inflation

psi_x = 0.673/4 ; #Taylor rule response to output

psi_dy = 3.122 ; #Taylor rule response to growth

ρ = 0.9457 ; #interest rate smoothing

Assign monetary policy parameters: pre-Volcker

psi_π_pre = 1.589 ; #Taylor rule response to inflation

psi_x_pre = 1.167/4 ; #Taylor rule response to output

psi_dy_pre= 1.028 ; #Taylor rule response to output growth

ρ_pre = 0.9181 ; #interest rate smoothing

Assign parameters governing shock processes

ρu = 0.0 ; #persistence of MP shock (post-Volcker)

σu = 0.279 ; #S.D. of MP shock (post-Volcker)

ρu_pre = 0.0 ; #persistence of MP shock (pre-Volcker)

σu_pre = 0.535 ; #S.D. of MP shock (pre-Volcker)

Calibrated parameters

58

ρa = 0.85 ; #persistence of technology shock

σa = 1.56 ; #S.D. of technology shock

ω = 0.773 ; #marginal cost of information

Parameters for simulation/irfs

simT = 50000 ;

nburn = 500 ;

T = 20 ;

Primitives of Drip

numshock= 2 ; #number of shocks

L = 160 ; #length of trunction

M = [zeros(1,L-1) 0; Matrix(I,L-1,L-1) zeros(L-1,1)];

M = M^2 ;

J = zeros(L,L); J[2,2] = 1 ;

Lambda = zeros(L,L);

for i = 1:Int64(L/numshock); Lambda[i*numshock,i*numshock] = 1; end

A = M + J ;

eye = Matrix(I,L,L);

We start with a function that solves the GE problem and returns the solution in a Drip struc-
ture:

59

function agg_drip(p::param,ω,A,Q,M,Lambda,

Ha, #state space rep. of a

Hu; #state space rep. of u

H0 = Hu+Ha, #optional: initial guess for H0

Sigma = A*A’+Q*Q’,#optional: initial guess for Σ_0

Omega = H0*H0’, #optional: initial guess for Ω

maxit = 10000, #optional: max. iterations for GE code

maxit_in = 100, #optional: max. iterations for solving DRIP

tol = 1e-4, #optional: tolerance for iterations

w = 1) #optional: update weight for RI

err = 1; iter = 1; L = length(H0); eye = Matrix(I,L,L);

temp0 = (eye-M)*inv(eye - M*Lambda’) ;

Htemp1 = (p.σ*(eye-p.ρ*M)*(M’-eye)-(1-p.ρ)*(p.psi_x*eye+p.psi_dy*(eye-M))) ;

Htemp2 = (1-p.ρ)*p.psi_π*eye - (eye-p.ρ*M)*M’ ;

Htemp3 = (1+p.ψ)/(p.σ+p.ψ)*((1-p.ρ)*p.psi_dy*(eye-M)-p.σ*(eye-p.ρ*M)*(M’-eye));

while (err > tol) & (iter < maxit)

if iter == 1

global ge = Drip(ω,p.β,A,Q,H0;

Ω0=Omega, Σ0=Sigma, w=w, maxit=maxit_in);

else

global ge = Drip(ω,p.β,A,Q,H0;

Ω0=ge.ss.Ω, Σ0=ge.ss.Σ_1, w=w, maxit=maxit_in);

end

XFUN(jj) = ((eye-ge.ss.K*ge.ss.Y’)*ge.A)^jj*(ge.ss.K*ge.ss.Y’)*(M’)^jj

X = DRIPs.infinitesum(XFUN; maxit=200, start = 0);

global Hp = X’*H0 ;

global Hπ = temp0*Hp ;

Hπ[L-20:end,:] .= 0

global Hx = (Htemp1)\(Htemp2*Hπ + Htemp3*Ha + Hu) ;

global H1 = Hp + p.α*(eye - M*Lambda’)*Hx ;

err= 0.5*norm(H1-H0,2)/norm(H0)+0.5*err;

H0 = H1;

cap= DRIPs.capacity(ge, unit = "bit")

if iter == maxit

print("***GE loop hit maxit – no convergence\n")

elseif mod(iter,50) == 0

println(" Iteration $iter. Error: $err. Capacity: $cap.")

end

iter += 1;

end

return(ge,H1,Hx,Hp,Hπ)

end;
60

Model solution for post-Volcker Calibration:

Q = zeros(L,2); Q[1,1]=σa; Q[2,2]=σu;

Ha_post = ρa.^(0:1:L/2-1) ;

Hu_post = ρu.^(0:1:L/2-1) ;

Ha_post = kron(Ha_post,[1,0])[:,:] ;

Hu_post = kron(Hu_post,[0,1])[:,:] ;

p = param(β,σ,ψ,θ,α,psi_π,psi_x,psi_dy,ρ,ρa,ρu,σa,σu) ;

Get initial guess:

print("\nGet initial guess for post-Volcker solutions\n")

@time begin

@suppress agg_drip(p,ω,A,Q,M,Lambda,Ha_post,Hu_post;

w=0.95, maxit=300, maxit_in=5);

end;

Solve the model for the post-Volcker calibration:

print("\nSolve for the post-Volcker model:\n");

@time (ge_post,H1_post,Hx_post,Hp_post,Hπ_post) =

agg_drip(p,ω,A,Q,M,Lambda,Ha_post,Hu_post;

H0 = H1,

Sigma = ge.ss.Σ_1,

Omega = ge.ss.Ω,

w=0.95, maxit=5000, maxit_in=500) ;

Hy_post = Hx_post + (1+ψ)/(σ+ψ)*Ha_post ;

Hi_post = M’*Hπ_post + σ*(M’-eye)*Hy_post ;

Hr_post = Hi_post - (M’)*Hπ_post ;

Model solution for pre-Volcker Calibration:

61

Q_pre = zeros(L,2); Q_pre[1,1]=σa; Q_pre[2,2]=σu_pre;

Ha_pre = ρa.^(0:1:L/2-1) ;

Hu_pre = ρu_pre.^(0:1:L/2-1) ;

Ha_pre = kron(Ha_pre,[1,0])[:,:] ;

Hu_pre = kron(Hu_pre,[0,1])[:,:] ;

p_pre = param(β,σ,ψ,θ,α,psi_π_pre,psi_x_pre,psi_dy_pre,

ρ_pre,ρa,ρu_pre,σa,σu_pre) ;

Get initial guess:

print("\nGet initial guess for pre-Volcker solutions\n")

@time begin

@suppress agg_drip(p_pre,ω,A,Q_pre,M,Lambda,Ha_pre,Hu_pre;

H0 = H1_post,

Sigma = ge_post.ss.Σ_1,

Omega = ge_post.ss.Ω,

w=0.95, maxit=300, maxit_in=5) ;

end;

Solve the model for the pre-Volcker calibration:

print("\nSolve for the pre-Volcker model:\n");

@time begin (ge_pre,H1_pre,Hx_pre,Hp_pre,Hπ_pre) =

agg_drip(p_pre,ω,A,Q_pre,M,Lambda,Ha_pre,Hu_pre;

H0 = H1,

Sigma = ge.ss.Σ_1,

Omega = ge.ss.Ω,

w=0.95, maxit=5000, maxit_in=500) ;

end

Hy_pre = Hx_pre + (1+ψ)/(σ+ψ)*Ha_pre ;

Hi_pre = M’*Hπ_pre + σ*(M’-eye)*Hy_pre ;

Hr_pre = Hi_pre - (M’)*Hπ_pre ;

Model Simulation for post-Volcker:

62

print("\nSimulate the models:\n");

@time begin

sim_post = simulate(ge_post; T=simT, burn=nburn, seed=1) ;

x_shock = sim_post.x ;

xhat_avg = sim_post.x_hat ;

sim_π = (Hπ_post’*(eye-Lambda*M’)*x_shock)’ ;

sim_y = (Hy_post’*(eye-Lambda*M’)*x_shock)’ ;

sim_x = (Hx_post’*(eye-Lambda*M’)*x_shock)’ ;

mat_sim = [sim_π sim_y sim_x] ;

cor_sim = cor(mat_sim) ;

stat_post = vec([std(sim_π/100) std(sim_y/100) cor_sim[2,1]]) ;

s = @sprintf("==> Post-Volcker: std(π)=%5.3f, std(y)=%5.3f, corr(π,y)=%5.3f",

stat_post[1], stat_post[2], stat_post[3]) ;

println(s) ;

end

Simulate the models:

==> Post-Volcker: std(π)=0.015, std(y)=0.018, corr(π,y)=0.209

Model Simulation for pre-Volcker:

63

@time begin

sim_pre = simulate(ge_pre; T=simT, burn=nburn, seed=1) ;

x_shock_pre = sim_pre.x ;

xhat_avg_pre= sim_pre.x_hat ;

sim_π_pre = (Hπ_pre’*(eye-Lambda*M’)*x_shock_pre)’;

sim_y_pre = (Hy_pre’*(eye-Lambda*M’)*x_shock_pre)’;

sim_x_pre = (Hx_pre’*(eye-Lambda*M’)*x_shock_pre)’;

mat_sim_pre = [sim_π_pre sim_y_pre sim_x_pre] ;

cor_sim_pre = cor(mat_sim_pre) ;

stat_pre = vec([std(sim_π_pre/100) std(sim_y_pre/100) cor_sim_pre[2,1]]);

s = @sprintf("==> Pre-Volcker : std(π)=%5.3f, std(y)=%5.3f, corr(π,y)=%5.3f",

stat_pre[1],stat_pre[2],stat_pre[3]) ;

println(s) ;

end

==> Pre-Volcker : std(π)=0.025, std(y)=0.020, corr(π,y)=0.245

IRFs:

pi = reshape(Hπ_post,numshock,Int64(L/numshock))’ ;

x = reshape(Hx_post,numshock,Int64(L/numshock))’ ;

y = reshape(Hy_post,numshock,Int64(L/numshock))’ ;

i = reshape(Hi_post,numshock,Int64(L/numshock))’ ;

r = reshape(Hr_post,numshock,Int64(L/numshock))’ ;

a = reshape(Ha_post,numshock,Int64(L/numshock))’ ;

u = reshape(Hu_post,numshock,Int64(L/numshock))’ ;

pi_pre = reshape(Hπ_pre,numshock,Int64(L/numshock))’ ;

x_pre = reshape(Hx_pre,numshock,Int64(L/numshock))’ ;

y_pre = reshape(Hy_pre,numshock,Int64(L/numshock))’ ;

i_pre = reshape(Hi_pre,numshock,Int64(L/numshock))’ ;

r_pre = reshape(Hr_pre,numshock,Int64(L/numshock))’ ;

a_pre = reshape(Ha_pre,numshock,Int64(L/numshock))’ ;

u_pre = reshape(Hu_pre,numshock,Int64(L/numshock))’ ;

64

title1 = Plots.plot(ylabel = "IRFs to Technoloygy Shock",

guidefont = font(10), grid = false, showaxis = false,

bottom_margin = 20Plots.px)

title2 = Plots.plot(ylabel = "IRFs to Monetary Shock",

guidefont = font(10), grid = false, showaxis = false,

bottom_margin = -50Plots.px, top_margin = 30Plots.px)

p1 = Plots.plot(0:T,[σa*pi[1:T+1,1],σa*pi_pre[1:T+1,1]],

title = L"Inflation (π_t)", ylabel = "Percent", guidefont = font(9),

yticks = -1:0.2:0.3, label = ["Post-Volcker" "Pre-Volcker"],

legend = :bottomright, legendfont= font(8),

color = [:black :darkgray], linestyle = [:solid :dashdot])

p2 = Plots.plot(0:T,[σa*y[1:T+1,1],σa*y_pre[1:T+1,1]],

title = L"Output (y_t)", legend = false,

color = [:black :darkgray], linestyle = [:solid :dashdot])

p3 = Plots.plot(0:T,[σa*i[1:T+1,1],σa*i_pre[1:T+1,1]],

title = L"Nominal Rate (i_t)", legend = false,

yticks = -0.15:0.03:0.0, color = [:black :darkgray],

linestyle = [:solid :dashdot])

p4 = Plots.plot(0:T,[σa*r[1:T+1,1],σa*r_pre[1:T+1,1]],

title = L"Real Rate (r_t)", legend = false,

color = [:black :darkgray], linestyle = [:solid :dashdot])

p5 = Plots.plot(0:T,[-σu*pi[1:T+1,2],-σu_pre*pi_pre[1:T+1,2]],

title = L"Inflation (π_t)", ylabel = "Percent",

xlabel = "Time", guidefont = font(9), label = ["Post-Volcker" "Pre-Volcker"],

legend = :topright, legendfont = font(8),

color = [:black :darkgray], linestyle = [:solid :dashdot])

p6 = Plots.plot(0:T,[-σu*y[1:T+1,2],-σu_pre*y_pre[1:T+1,2]],

title = L"Output (y_t)", xlabel = "Time",

guidefont = font(9), legend = false,

color = [:black :darkgray], linestyle = [:solid :dashdot])

p7 = Plots.plot(0:T,[-σu*i[1:T+1,2],-σu_pre*i_pre[1:T+1,2]],

title = L"Nominal Rate (i_t)", xlabel = "Time",

guidefont = font(9), legend = false,

color = [:black :darkgray], linestyle = [:solid :dashdot])

p8 = Plots.plot(0:T,[-σu*r[1:T+1,2],-σu_pre*r_pre[1:T+1,2]],

title = L"Real Rate (r_t)", xlabel = "Time",

guidefont = font(9), legend = false,

color = [:black :darkgray], linestyle = [:solid :dashdot])

65

l = @layout [

a{0.001w} Plots.grid(1,4)

a{0.001w} Plots.grid(1,4)

]

Plots.plot(title1,p1,p2,p3,p4,title2,p5,p6,p7,p8,

layout = l, gridstyle = :dot,

gridalpha = 0.2, lw = [2.5 2],

titlefont = font(10), xticks = (0:4:T),

xlim = (0,T), tickfont= font(8),

size = (900,550), framestyle = :box)

66

References

Afrouzi, Hassan, “Strategic Inattention, Inflation Dynamics, and the Non-Neutrality of Money,”
CESifo Working Paper Series 8218, CESifo 2020.

and Choongryul Yang, “Dynamic Rational Inattention and the Phillips Curve,” 2019. Available
at SSRN: https://ssrn.com/abstract=3465793 or http://dx.doi.org/10.2139/ssrn.3465793.

Maćkowiak, Bartosz and Mirko Wiederholt, “Optimal Sticky Prices under Rational Inattention,”
The American Economic Review, 2009, 99 (3), 769–803.

Mackowiak, Bartosz and Mirko Wiederholt, “Rational Inattention and the Business Cycle Effects
of Productivity and News Shocks,” 2020.

Maćkowiak, Bartosz, Filip Matějka, and Mirko Wiederholt, “Dynamic Rational Inattention: An-
alytical Results,” Journal of Economic Theory, 2018, 176, 650 – 692.

Sims, Christopher A., “Rational Inattention and Monetary Economics,” in Benjamin M. Friedman
and Michael Woodford, eds., Handbook of Monetary Economics, Vol. 3, Elsevier, 2010, pp. 155–81.

Woodford, Michael, “Imperfect Common Knowledge and the Effects of Monetary Policy,” in
Philippe Aghion, Roman Frydman, Joseph Stiglitz, and Michael Woodford, eds., Knowledge,
Information, and Expectations in Modern Macroeconomics: In Honor of Edmund S. Phelps, Princeton
University Press, 2003, pp. 25–58.

67

	Overview
	Installation
	Definition of the Problem
	Steady State of DRIPs
	Transition Dynamics of DRIPs
	Impulse Response Functions
	Simulations of DRIPs

	Examples and Replications
	Pricing under RI without Endogenous Feedback
	Pricing under RI with Endogenous Feedback
	Replication of mackowiak2009optimal
	Replication of sims2010rational
	Replication of mackowiak2018filter
	Replication of the Quantitative Analysis in AY2019

	References

